Practical Analysis of Aircraft Composites

Brian Esp
Preface

The focus of this book is the structural analysis of composite laminates used for aircraft structures, with an emphasis on large fixed wing aircraft applications. The primary composite considered is a laminate consisting of a carbon fiber reinforcement and an epoxy matrix, but many of the presented solutions are appropriate for other material systems.

In order for the analysis methods to be demonstrated in the most effective manner, additional topics are discussed; by doing so, the coupled aspects of composite analysis can be addressed. These topics include:

- unique mechanical properties of composites
- testing at various levels of structural completeness
- standard design practices
- structural requirements and structural substantiation
- processing methods

Part 1 (Chapters 1–23) covers a wide variety of analysis topics. The solutions are straightforward and do not have complex mathematical expressions. This is consistent with typical engineering analysis. Also, complex mathematical expressions do not necessarily increase accuracy and may incorrectly imply that a purely analytical solution is appropriate for composites. Practical composite analysis methods (especially those related to strength prediction) are often semi-empirical and require specific test data to develop a validated analysis method; composites must consider notch sensitivity, impact damage, repairability, etc. Considerable effort is made to explain the reasons why practical approaches are sometimes different from academic solutions; the shortcomings of purely analytical approaches are also discussed. In contrast, academic solutions for metals tend to carry over well to practical approaches.

Mechanical properties, many of which are unique to composites, are also discussed in Part 1: knowledge of these properties is critical to the analysis of composite laminates that are used for aircraft structures. Also included are design considerations for composite laminates and the structures that use them. For typical structures, it is important to use standard design practices where possible because composites have many failure modes, some of which are less predictable (and less forgiving) than metals when designs are outside the typical design space.
Part 2 (Chapters 24–28) discusses the requirements and substantiation for composite aircraft structures. Fatigue loading, static strength requirements, damage tolerance, and durability are discussed from a practical perspective; these topics are harmonized with Part 1. A working knowledge of these topics is invaluable to the engineer and allows for a comprehensive understanding of the analysis of composite aerostructures.

The initial chapters of this book present the basic mechanics of laminated composites and can be used in an academic setting. However, this book is primarily intended for practicing engineers who wish to expedite the learning curve when performing practical analysis (and avoid many pitfalls along the way). Because of the vast scope of this work, it also serves as a valuable self-contained reference for engineers already familiar with composite analysis. The analysis approaches are thoroughly explained, allowing engineers to modify and develop their own methods.

Brian Esp, Ph.D.
Contents

Preface ................................................................. iii

Part 1: Analysis and Design 1

1 Introduction ......................................................... 3
   1.1 Composites 3
   1.2 Composite Applications for Aircraft Structures 3
   1.3 Composite Material Constituents 6
   1.4 Composite Materials 10
   1.5 Composite Laminates 13
   1.6 Material Characterization 16
   1.7 General Material Properties 17
   1.8 General Advantages of Composite Materials 20
   1.9 General Disadvantages of Composite Materials 24
   1.10 Manufacturing Methods 26
   1.11 Strength, Stiffness, Moment of Inertia, and Fatigue Comparisons 27

References 31

2 Analysis Overview and Composites Versus Metals .... 33
   2.1 Introduction 33
   2.2 Analysis Accuracy and Risk of Failure 33
   2.3 Building Block Testing 34
   2.4 Validated Analysis Methods 35
   2.5 Preliminary Analysis 38
   2.6 Loads 39
   2.7 Load Redistribution 41
CONTENTS

2.8 Elasticity 42
2.9 Static Strength (In-Plane) 42
2.10 Interlaminar Strength 44
2.11 Mechanically Fastened Joints 44
2.12 Bonded Joints 46
2.13 Beams 46
2.14 Stability 47
2.15 Sandwich Structures 47
2.16 Large Cuts 48
2.17 Post-Impact Strength 48
2.18 Mechanical Properties 48
2.19 Environmental Effects 50
2.20 Fatigue Loading 51
2.21 Damage Tolerance 53
2.22 Structural Sizing 54
References 55

3 Material Elasticity ................................. 57

3.1 Introduction 57
3.2 General Mechanics 57
3.3 Isotropic Material 61
3.4 Orthotropic Material 62
3.5 Anisotropic Material 62
3.6 Plane Stress 63
3.7 Plane Stress Versus Plane Strain — Stiffness Effect 64
3.8 Ply 65
3.9 Transformation of Stress and Strain (2D) 69
3.10 Transformation of Stiffness — Ply (2D) 72
3.11 Laminate 76
3.12 Micromechanics 76
3.13 Practical Discussion 76
References 77
CONTENTS

4 Laminate Elasticity ........................................... 79
  4.1 Introduction 79
  4.2 Modulus of Elasticity and Stiffness 79
  4.3 Classical Laminate Theory (CLT) 81
  4.4 Components of the [A], [B], and [D] Matrices 89
  4.5 Special Types of Laminates 94
  4.6 Rotation of the (A, B, D) and (a, b, d) Matrices 102
  4.7 Applied Loads and Applied Curvatures — Unsymmetric Laminates 107
  4.8 Comparison to Experimental Data 108
  4.9 Summary 108
  References 109

5 Effective Elastic Constants ................................. 111
  5.1 Introduction 111
  5.2 Effective In-Plane Elastic Constants — Symmetric Laminates 111
  5.3 Effective In-Plane Elastic Constants — Unsymmetric Laminates 115
  5.4 Carpet Plots — In-Plane Properties 119
  5.5 Effective Bending Moduli — Symmetric and Unsymmetric Laminates 124
  5.6 Effective Bending Moduli — Symmetric Laminates 125
  5.7 Summary 126
  References 127

6 Bending Stiffness of Plates ................................. 129
  6.1 Introduction 129
  6.2 Bending Stiffness — Isotropic Plate 130
  6.3 Bending Stiffness — Symmetric Laminates 134
  6.4 Bending Stiffness — Unsymmetric Laminates 134
  6.5 Deflection of Laminated Plates 136
  6.6 Built-Up Structures 137
  6.7 Summary 138
  References 138
7 Laminate and Ply Stress/Strain .......................... 139
   7.1 Introduction 139
   7.2 Loads 139
   7.3 Laminate Strain 141
   7.4 Ply Stress and Strain — Intralaminar 142
   7.5 Unsymmetric Laminates 146
   7.6 Practical Discussion 147
References 147

8 Interlaminar Stress ................................. 149
   8.1 Introduction 149
   8.2 Free Edges 151
   8.3 Curved Laminates 156
   8.4 Other Scenarios 159
References 160

9 Unnotched Strength ................................. 161
   9.1 Introduction 161
   9.2 Failure and Damage Mechanisms 162
   9.3 Testing at Different Levels 163
   9.4 Fiber Dominated Laminates 164
   9.5 Allowables, Design Values, and Margin of Safety 166
   9.6 Required Stresses and Strains for Ply-Based and Laminate-Based Failure Criteria 166
   9.7 Ply-Based Failure Criteria — Preliminary Analysis 167
   9.8 Ply-Based Failure Criteria — Shortcomings 176
   9.9 Ply-Based Failure Criteria — Final Analysis 177
   9.10 Laminate-Based Failure Criteria — Preliminary Analysis 178
   9.11 Laminate-Based Failure Criteria — Final Analysis 181
   9.12 Ply-Based Approach Versus Laminate-Based Approach 182
   9.13 Common Approaches 184
   9.14 Other Criteria 184
   9.15 Free Edge Delamination 185
   9.16 Practical Discussion 185
References 186
10 Small Notch Strength

10.1 Introduction 189
10.2 Peak Stress Concentration and Stresses Near the Hole Edge 190
10.3 Notch Sensitivity 195
10.4 Hole Size Effect 196
10.5 Overview of Solution Approaches 198
10.6 Physically Consistent Approaches 198
10.7 Apparent Strength Via Laminate Testing 199
10.8 Point Stress Criterion and Average Stress Criterion 201
10.9 Fracture Mechanics Related Approaches 205
10.10 Notch Shape 206
10.11 Large Cuts and Cutouts 206
10.12 Practical Discussion 207

References 207

11 Mechanically Fastened Joints

11.1 Introduction 211
11.2 Load-Transfer Joints—Shear Joints 213
11.3 Load-Transfer Joints—Tension Joints 215
11.4 Hard Points 215
11.5 Fastener Load Distribution—General 216
11.6 Linear Fastener Flexibility 220
11.7 Linear Fastener Load Distribution—Matrix Solution 224
11.8 Shear Loading 231
11.9 Joint Failure Modes—Overview 232
11.10 Bearing Failure 234
11.11 Fastener Failure 235
11.12 Single-Row Joints 237
11.13 Tension Bearing-Bypass—Overview 238
11.14 Tension Bearing-Bypass—Uniaxial Loading Solution Approaches 246
11.15 Approximate First-Order Solution—Uniaxial Tension 250
12 Bonded Metal Joints ................................. 277
  12.1 Introduction 277
  12.2 Joint Types for Load Transfer 278
  12.3 Failure Modes 280
  12.4 Joint Capability 282
  12.5 Analysis Approaches — Overview 283
  12.6 Uniform Single-Lap Joint — Bondline Elastic
      Shear Stress 285
  12.7 Uniform Double-Lap Joint — Bondline Elastic
      Shear Stress 291
  12.8 Shear Deformable Adherends — Elastic Solutions 293
  12.9 Uniform Double-Lap Joint — Bondline
      Elastic-Plastic Shear Analysis 294
  12.10 Tapered Double-Strap Joint — Bondline Analysis 299
  12.11 Scarf Joints — Bondline Analysis 300
  12.12 Stepped Joints — Bondline Shear Analysis 302
  12.13 Peel Stresses in the Bondline 304
  12.14 Adhesive Properties (Shear) and Idealized Models 307
  12.15 Durability and Defects/Damage/Disbonds 312
  12.16 Computational Solutions 314
  12.17 Processing and Quality Control 314
  12.18 Structural Bonding — Special Consideration 315
  12.19 Overall Analysis Considerations 315
  12.20 Design — Bonded Metal Load-Transfer Joints 316
  12.21 Practical Discussion 318
References 319
**13 Bonded Composite Joints, Disbonds/Delaminations, and Interlaminar Fracture Mechanics.** 323

- 13.1 Introduction 323
- 13.2 Disbond, Unbond, and Delamination 324
- 13.3 Composite Failure Modes and Critical Interface 325
- 13.4 Approaches 326
- 13.5 Empirical Curve Fit 326
- 13.6 Stress-Based Analysis — Semi-Empirical 328
- 13.7 Stress Analysis Versus Fracture Mechanics Analysis 329
- 13.8 Interlaminar Fracture Mechanics (ILFM) 331
- 13.9 ILFM Analysis Flowchart 341
- 13.10 Design — Bonded Composite Load-Transfer Joints 342
- 13.11 Bonded Skin-Stiffener Joints 347
- 13.12 Fatigue Loading 350
- 13.13 Processing and Quality Control 350
- 13.14 Structural Bonding — Special Consideration 350
- 13.15 Summary 351

References 351

**14 Mechanically Fastened Joints Versus Bonded Joints.** 357

- 14.1 Introduction 357
- 14.2 Advantages of Bonded Joints 358
- 14.3 Disadvantages of Bonded Joints 359
- 14.4 Advantages and Disadvantages of Mechanically Fastened Joints 360
- 14.5 Load Magnitude and Laminate Thickness 361
- 14.6 Fastened-Bonded Joints 361
- 14.7 Comparisons between Properly and Poorly Processed Joints 362
- 14.8 Repair Specific Comparisons 363

References 363
CONTENTS

15 Repairs ................................................ 365
   15.1 Introduction 365
   15.2 Damage Threats 366
   15.3 Damage Severity Thresholds 366
   15.4 Structural Repairs—Requirements and Considerations 366
   15.5 Mechanically Fastened Repairs—Solid Laminates 368
   15.6 Bonded Repairs—Solid Laminates 374
   15.7 Comparisons, Design, and Processing Considerations 376
   15.8 Sandwich Structures 379
   15.9 Bonded Composite Repairs for Metal Structures 379
   15.10 Injection Repair 380
   15.11 Repairability 380
References 380

16 Beams ..................................................... 383
   16.1 Introduction 383
   16.2 Beam Structures 383
   16.3 Global and Local Coordinate Systems 386
   16.4 Cross Section Properties 386
   16.5 Deflection of Beams—Transverse Direction 389
   16.6 Flange/Web Loads and Strains—Simplified Solution 392
   16.7 Flange/Web Loads and Strains—General Solution 396
   16.8 Strength and Load Capability Analysis 398
   16.9 Stability Analysis 399
   16.10 Torsion Analysis 400
References 400

17 Stability ................................................. 401
   17.1 Introduction 401
   17.2 Elastic Plates—Initial Buckling 401
   17.3 Elastic Plates—Initial Buckling—Direct Solutions 406
   17.4 Elastic Plates—Initial Buckling—Wave Solutions 410
17.5 Elastic Plates — General Solution  413
17.6 Post-Buckling  414
17.7 Cross Sections — Local Buckling  416
17.8 Cross Sections — Crippling  419
17.9 Cross Sections — Weighted Average Approaches  419
17.10 Cross Sections — Section Strength for Column Analysis  420
17.11 Columns  423
17.12 Inter-Fastener Buckling  430
17.13 Analysis Considerations  432

References  432

18 Sandwich Structures  ........................................... 435
18.1 Introduction  435
18.2 Sandwich Structures — General  435
18.3 Applications  438
18.4 Global and Local Coordinate Systems  438
18.5 Analysis Simplifications  439
18.6 Failure Modes — Overview  439
18.7 Effective Core Properties  441
18.8 Effective Axial Modulus — Facesheets  442
18.9 Narrow Sandwich Beams — Bending Stiffness and Deflection  443
18.10 Narrow Sandwich Beams — Stresses and Strains  449
18.11 Sandwich Plates — Stress/Strain/Deflection  453
18.12 Sandwich Plates — Bending Stiffness  455
18.13 Failure Modes — General Statements  457
18.14 Facesheets — Effective Bending Moduli and Bending Stiffness  457
18.15 Strength Failure Modes  458
18.16 Local Core Crushing and Core Fracture  460
18.17 Flexural Core Crushing  461
18.18 Flatwise Tension or Compression  462
18.19 Facesheet Wrinkling 462
18.20 Intracell Buckling (Dimpling) 466
18.21 Core Shear Instability (Shear Crimping) 469
18.22 Overall Stability — General 471
18.23 Overall Elastic Stability — Sandwich Columns 473
18.24 Overall Elastic Stability — Sandwich Plates 474
18.25 Design, Durability, and Damage Resistance 475
References 476

19 Large Cuts and Cutouts ......................... 477
19.1 Introduction 477
19.2 Large Cuts 477
19.3 Large Cutouts 485
19.4 Summary 487
References 487

20 Post-Impact Strength ............................... 489
20.1 Introduction 489
20.2 Impact Damage 489
20.3 Barely Visible Impact Damage (BVID) 492
20.4 Sublamine Analytical Solutions 493
20.5 Summary 494
References 495

21 Mechanical Properties and Preliminary Design Values ..................... 497
21.1 Introduction 497
21.2 Apparent Properties 498
21.3 Material Variability 499
21.4 Temperature and Moisture Effects 501
21.5 Tension Versus Compression Properties 502
21.6 Unidirectional Plies Versus Woven Fabric Plies 502
21.7 Laminate Stacking Sequence (LSS) 503
21.8 Laminate Thickness 503
21.9 Open Holes Versus Filled Holes 503
21.10 Bearing Strength 504
21.11 Bearing-Bypass 507
21.12 Post-Impact Strength 508
21.13 Interlaminar Properties 508
21.14 Strain Allowables Versus Stress Allowables 509
21.15 Strain Allowable Determination 510
21.16 Allowables, Knockdowns, and Design Values 511
21.17 ASTM Standards—Composite Materials 512
21.18 General Elastic Composite Ply Properties 512
21.19 Properties for IM7/8552 513
21.20 Metal Properties 523
21.21 Preliminary Design Value Strains for Carbon/Epoxy Laminates 524

References 528

22 General Design Guidelines 531

22.1 Introduction 531
22.2 Concurrent Engineering 531
22.3 Part Candidates 531
22.4 Standard Orientations 532
22.5 Fiber Percentages 532
22.6 Repairability 534
22.7 Laminate Stacking Sequence (LSS) 535
22.8 Ply Drops 538
22.9 Corrosion and Environmental Deterioration 538
22.10 Exposure to Ultraviolet Rays and Fluids 539
22.11 Durability and Damage Resistance 539

References 540
23 Analysis Considerations and Sizing Drivers . . . . . . 541
  23.1 Validated Analysis Methods 541
  23.2 Detail Analysis and Loads Models 541
  23.3 Tension Versus Compression Mechanical Properties 542
  23.4 Stability Analysis Considerations 542
  23.5 Environments 543
  23.6 Allowables Versus Design Values 543
  23.7 Stress Concentrations 543
  23.8 Interlaminar Stresses 543
  23.9 Structural Requirements and Substantiation 544
  23.10 Sizing Drivers 544
References 546

Part 2: Requirements and Substantiation 547

24 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
  24.1 Introduction 549
  24.2 Details Susceptible to Fatigue Damage 550
  24.3 Spectrum Loading 550
  24.4 General Environmental Considerations 551
  24.5 Material Variability — Fatigue Scatter 551
  24.6 Carbon Fiber/Epoxy Laminates 551
  24.7 Glass Fiber Composites and Aramid Fiber Composites 552
  24.8 Unnotched Laminates Versus Notched Laminates 552
  24.9 Open Hole Laminates 553
  24.10 Mechanically Fastened Joints 556
  24.11 Delamination Growth 557
  24.12 Bonded Joints 561
  24.13 No-Growth, Slow-Growth, and Arrested-Growth 561
  24.14 Analytical Solutions 564
  24.15 Structural Testing Approach 565
  24.16 Summary 565
References 566
25 **Static Strength Requirements** .......................... 569
   25.1 Introduction 569
   25.2 Single Load Path Structures Versus Multiple Load Path Structures 570
   25.3 Design Loads 570
   25.4 Ultimate Load Requirements 571
   25.5 Limit Load Requirements 573
   25.6 Summary and Notes 573
   References 574

26 **Damage Tolerance** ........................................ 577
   26.1 Introduction 577
   26.2 Safety Approaches 578
   26.3 Critical Structure Versus Secondary Structure 579
   26.4 Material Properties for Damage Tolerance 579
   26.5 Threats Related to Damage Tolerance 580
   26.6 Damage Detection 580
   26.7 Damage Size Thresholds 581
   26.8 Damage Tolerance Principles 581
   26.9 Damage Categories 583
   26.10 Category 4 Damage and other Large Damage 585
   26.11 Visible Inspection of Damage and Associated Load Requirements 586
   26.12 Inspection Intervals 589
   26.13 Structural Bonding Requirements — Special Consideration 590
   26.14 Summary and Notes 591
   References 592

27 **Durability and Damage Resistance** ....................... 595
   27.1 Introduction 595
   27.2 Durability 596
   27.3 Damage Resistance 597
   27.4 Solid Laminates — Impact Damage Resistance 597
## CONTENTS

27.5 Solid Laminates Versus Sandwich Structures 598  
27.6 Sandwich Structures — Design, Durability, and Damage Resistance 601  
27.7 Handling and Step Loads 603  
27.8 Corrosion 603  
27.9 Bonded Joints 603  
27.10 Fastened Joints 603  
References 604  

### 28 Structural Substantiation 605

28.1 Introduction 605  
28.2 Building Block Testing 606  
28.3 Load Factors and Life Factors 610  
28.4 Hybrid Structures 611  
28.5 Substantiate by Analysis 612  
28.6 Substantiate by Tests 613  
28.7 Fatigue and Durability Evaluation — Substantiate by Tests 615  
28.8 BVID Simulation 616  
28.9 Full-Scale Test Sequence 616  
28.10 Full-Scale Destruction Tests 617  
28.11 Summary 617  
References 618

### Appendices 619

#### A Micromechanics 621

A.1 Introduction 621  
A.2 Elastic Properties — Ply 622  
A.3 Strength Properties — Ply 624  
A.4 Hygrothermal Properties — Ply 625  
References 626
B  Hygrothermal —
Effective Load and Effective Properties ............... 627
   B.1 Introduction  627
   B.2 Hygrothermal Loads/Moments  628
   B.3 Ply Strain and Stress  630
   B.4 Effective Hygrothermal Properties — Laminate  633
   B.5 CTE Carpet Plot  634
References  635

C  Elliptical Hole —
Stress Field Solution ........................................ 637
   C.1 Introduction  637
   C.2 Stress Solution  637
   C.3 Laminate Stress-Strain Relationship  641
   C.4 Ply Strain and Stress  642
References  643

D  Fastener Load Distribution—
Additional Solutions ....................................... 645
   D.1 Introduction  645
   D.2 Fastener Flexibility  645
   D.3 Fastener Load Distribution — Matrix Solutions  647
References  649

E  Bonded Joints—Processing and Quality Control .... 651
   E.1 Introduction  651
   E.2 Processing Methods  652
   E.3 Cure Temperature and Pressure  653
   E.4 Contamination  653
   E.5 Pre-Bond Moisture  653
   E.6 Surface Preparation — Chemical Activation and Resistance to Hydration  654
   E.7 Non-Destructive Inspection (NDI)  656
   E.8 Destructive Testing  656
References  657
Part 1 (Chapters 1–23) focuses on the analysis and design of composite structures. The presented topics are:

- general behavior of composites
- validated analysis methods via building block testing
- analysis of composites versus metals
- analytical solutions for various problems (Chapters 3–20)
- mechanical properties
- various aspects of design
- general analysis considerations

Part 1 presents analytical solutions while Part 2 (Chapters 24–28) primarily discusses structural requirements and substantiation. Although presented in two parts, the analytical solutions from Part 1 are meant to be combined with the topics in Part 2.
Introduction

The basic usage, definitions, behavior, and typical properties of composites are presented in this chapter. Because of their relatively high performance, carbon fiber/epoxy composite laminates are commonly used for large aircraft primary structures. Therefore, this material system is given priority throughout this book.

1.1 COMPOSITES

A general composite refers to multiple materials or parts that are combined in a way that allows them to effectively act as a single material or part. A sandwich structure is a composite structure that may be made entirely from metal or from composite materials (See Chapter 18). Thus, composite structures can be metal. However, for most of this book the term composite usually refers to a composite material (such as carbon fiber combined with an epoxy matrix).

1.2 COMPOSITE APPLICATIONS FOR AIRCRAFT STRUCTURES

1.2.1 Military Aircraft—Fixed Wing. Glass fiber composites were first developed in the 1930s. They were later used for radar covers (radomes) on military aircraft during WWII. In the 1960s, glass fibers were improved and subsequently used for lightly loaded secondary aircraft structures. Some examples of lightly loaded structures are fairings, spoilers, control surfaces, and radomes.

In the 1960s, boron fiber and carbon fiber composites were developed. Boron fibers were used for primary structures in the 1970s. In the 1980s, carbon fiber composites were used for primary structures on the F-117 and B-2 stealth aircrafts. Currently, carbon fiber composites are more commonly used than boron fiber composites (See Section 1.3).

Compared to metals, carbon fiber composites are associated with weight reduction, improved radar signature (stealth), and other potential benefits. Because of this, most modern U.S. military fixed wing aircraft use carbon fiber composites for external structures. Some aircraft, such as the B-2 and the
Boeing AV-8 Harrier II, have composite internal structures. The AV-8B utilizes composite spars for the wing, which have a sine wave web. The Eurofighter Typhoon has both composite external and internal structures. However, modern U.S. military aircraft use metal for many of the internal structures. This is the case for the Lockheed Martin F-22 and Lockheed Martin F-35 (See Figure 1.1). Figure 1.2 shows the general trend of composite use since 1970.

Figure 1.1  Lockheed Martin F-35. The external structure consists of carbon fiber reinforced plastic (CFRP). (Courtesy of Lockheed Martin Aeronautics Company.)

Figure 1.2  Use of composites for large fixed wing aircraft.
1.2.2 Large Civil Aircraft—Fixed Wing. The use of composite materials for large civil aircraft has lagged behind military aircraft usage (See Figure 1.2). This is attributed to conservatism, economic factors, lack of a need for low observable materials (stealth), and other factors. For large civil aircraft, composites were initially used for secondary structures. Some examples are fairings, spoilers, control surfaces, floor panels, and radomes (radar covers).

In the late 1980s and 1990s, composites were used for the primary structures of large civil aircraft. Two reasons for this were improvements to carbon fibers and improved toughness of epoxies. The Boeing 777, introduced in 1995, utilizes composite materials for primary structures (empennage and floor beams).

The use of composites was significantly expanded with the Boeing 787, which was introduced in 2011 (See Figure 1.3). Over 50% of the aircraft is made with composite materials, and the majority of the structural members are made from carbon fiber reinforced plastic/polymer (CFRP). The most used polymer for aircraft structures is epoxy. The Airbus A350, which entered service in 2015, continues the trend of increased usage of composites for large civil aircraft; its fuselage and wings are primarily made from carbon/epoxy.

One of the most attractive features of carbon fiber composites is their resistance to fatigue damage, especially when loaded in tension. Because of this, the long-term cost of operation may be reduced when carbon fiber composites are used (compared to metals). Also, the cabin pressure of a metal fuselage is less than ideal, which is necessary to prevent fatigue damage caused by pressurization cycles. However, because of its resistance to fatigue damage, a carbon fiber fuselage may operate at a greater pressure, which improves the comfort of passengers.

Figure 1.3 Boeing 787. The majority of the primary structures are carbon fiber reinforced plastic (CFRP). (Courtesy of Boeing Commercial Airplane Group.)
1.2.3 **Small Civil Aircraft — Fixed Wing.** Since about the 1980s, there has been a significant use of composites in small civil aircraft. For primary structures, small aircraft often use glass fibers (fiberglass). This is due in large part to the reduced cost of glass fiber when compared to carbon fiber. Composites are often considered for small aircraft because of the relatively low tooling cost associated with achieving an aerodynamically smooth surface.

Small aircraft may also use sandwich construction for primary structures; large aircraft tend to use solid laminates and a skin-stiffened configuration (See Chapter 27). Also, small aircraft often use bonded joints for primary structures, in contrast with medium/high load-transfer regions in large aircraft, where mechanically fastened joints are often preferred (See also Chapter 14).

1.2.4 **Helicopters.** Modern helicopters often use composite materials for drive shafts, flex beams, and rotor blades. Fiberglass laminates or fiberglass hybrid laminates are often used for the rotor blades since stiffness is not usually a driving factor. Helicopter airframes may also be made from composite materials.

1.3 **COMPOSITE MATERIAL CONSTITUENTS**

A *composite material* consists of two or more materials (constituents) when viewed at a macroscopic scale. The combination of these materials creates a *more useful material* than the constituents by themselves. A matrix (stabilizing material) surrounds the fibers (reinforcement) in a typical composite material. The fiber and matrix must be properly bonded together to function as a single material system.

Compared to the same material in bulk form, a material in fiber form exhibits superior properties. This is because there are fewer defects in fiber form when compared to bulk form. As the diameter of the fiber is reduced, so does the amount/severity of detrimental imperfections. Also, small-diameter fibers can be rapidly cooled more effectively than a material in bulk form. This can improve material properties. Fibers can also be stretched along their axis during production, which can increase the fiber’s strength. Furthermore, if an individual weak fiber fails in a composite material, the failure does not automatically propagate to the adjacent fiber. Rather, the matrix can transfer the load to the adjacent fibers (crack arresting feature). In turn, there is an increased resistance to flaw/crack propagation. By comparison, a material in bulk form has less resistance to flaw/crack propagation.

A typical matrix resists damage that may occur from impacts and other threats. This prevents the composite material from behaving in an excessively brittle manner. For example, glass sheets are susceptible to fracture in the presence...
of small flaws or from impact events. However, glass fiber composites are less susceptible to damage from impact events. The same can be said for bulk form carbon compared to carbon fiber composites. For these (and other) reasons, the combination of fibers and a matrix is superior to that of a bulk material (for typical fiber materials used for aircraft applications).

A fiber reinforced plastic (FRP) is a composite that consists of various possible fiber types that are combined with a plastic matrix. In general, the most common type of matrix used for aircraft applications is a polymer matrix composite (PMC). For primary load carrying composite structures in large aircraft, the combination of carbon fiber reinforcement and a polymer (or plastic) matrix is currently the standard material system. This material system is known as a carbon fiber reinforced plastic (CFRP). Epoxy is the most common polymer used for the matrix.

1.3.1 Fiber (Reinforcement). The fiber is the major load carrying component of the composite. Fibers can be made from materials such as carbon, graphite, glass, boron, aramid (such as Kevlar® and Nomex®), or quartz. Each of these fibers has its own advantages and disadvantages. Stiffness, static strength, impact strength, fatigue performance, electrical conductivity, electrical permeability, and thermal properties are among the properties that are considered when selecting a fiber. Long, continuous fibers are considered to be high performance since the mechanical properties are maximized in this form. This form is the most common type for aircraft applications. Detailed discussions about various fiber types and fiber manufacturing processes may be found elsewhere.2, 3

Discontinuous fibers (chopped fibers) have reduced properties because the load path of the fiber is disrupted. They are not usually suitable for primary aerostructures, though there are exceptions. Discontinuous fibers may also be considered for some secondary structures.

1.3.1.1 Carbon Fiber. Carbon fiber is the typical choice for primary structures of modern large aircraft. Carbon fiber, 93–95% carbon, is similar to graphite fiber, which is >95% carbon. From the structural analyst’s perspective, both may be treated in the same manner. Carbon fibers have relatively large stiffness and strength, and high resistance to fatigue damage. This makes them suitable for primary structures. Carbon fiber is considered to be a high performance reinforcement choice.

Carbon fibers can be categorized as one of the following: low modulus, standard modulus, intermediate modulus, high modulus, or ultra high modulus. Standard modulus and intermediate modulus fibers are considered to be “high performance”, and exhibit good strength and stiffness properties. These fibers are typically used for large civil aircraft and military aircraft.
CHAPTER 1: INTRODUCTION

Some intermediate modulus fiber types are IM7, IM8, T800, T1000, and IMS. Some standard modulus fiber types are AS4, T300, T700, and T650. Intermediate modulus fibers typically have higher strength than standard modulus fibers. Carbon fibers may also be categorized as one of the following: high modulus (HM), high strength (HS), or intermediate modulus (IM).

1.3.1.2 Glass Fiber. There are several types of glass fibers: E-glass (electrical grade), S-glass, S2-glass (structural grade), and other types. Compared to carbon fibers, glass fibers may have a higher strain to failure and usually have a greater ability to absorb energy. Though glass fibers cost significantly less than carbon fiber, they are far less stiff. The strength of glass fiber composites is also lower than standard modulus or intermediate modulus carbon fibers. Also, glass fibers do not perform as well in fatigue as carbon fibers (See Chapter 24). For the previously stated reasons, glass fibers are not usually considered for primary structures in large aircraft, but small aircraft may use them for primary structures. Glass fibers are also widely used in other industries. Glass fiber is considered to be a “medium performance” or “low performance” fiber.

For large aircraft, glass fibers may be used for secondary structures such as radomes, fairings, wingtips, floor panels, and interiors. They may also be used for specialized applications such as helicopter rotor blades, where stiffness is not the driving factor.

1.3.1.3 Boron Fiber. In the 1970s, boron fibers were used on the F-14 and F-15. Boron fibers have a relatively large diameter, which increases the compressive strength. However, this prevents them from being used in woven fabric form. Boron fibers are also very hard, making them difficult to drill. Due in part to the high cost of boron fiber, the use of carbon fiber is far more common in current aircraft applications. However, boron fibers may be used for repairs to aluminum structures because there is no potential for galvanic corrosion and the coefficient of thermal expansion is more similar to aluminum (See Chapter 21).

1.3.1.4 Aramid Fiber. Kevlar® and Nomex® are aramid fibers. They have high toughness (ability to absorb energy) and high tensile strength. They may be used for specialized applications such as engine containment rings. They may also be used for fairings, radomes, or other sandwich structure applications. Aramid fibers are sometimes used to hybridize laminates, which can improve certain mechanical properties (but usually at the expense of other properties). However, because of their poor compressive strength, aramid fibers are not usually used for high load applications. They also have a tendency to absorb moisture, which negatively affects many of their mechanical properties.
1.3.2 **Matrix.** The matrix material is softer and of lower strength than the fiber. However, the matrix is necessary to bond the stiff and strong fibers together. The matrix allows the composite to resist compression loading and protects the fibers from physical and environmental threats such as fuel, hydraulic fluid, paint strippers, handling, and abrasions. In the presence of an individual broken fiber, the matrix will transfer the load via shear in a similar manner as a bonded joint. The matrix also provides an energy-absorbing mechanism via localized cracking/delamination. This can improve impact damage resistance and also “soften” the detrimental effects caused by stress concentrations.

A composite material (also known as a composite material *system*) is often classified by one of the following broad categories, which is based on the type of matrix:

- **PMC** — polymer matrix composite
- **CMC** — ceramic matrix composite
- **MMC** — metal matrix composite
- **CCC** — carbon-carbon composite (carbon matrix)

A PMC is the most commonly used type for aircraft structures. A polymer matrix (cured state) may also be referred to as a resin (uncured state). Though there are many potential polymer candidates, epoxy (a thermoset) is the most common choice. A thermoset polymer undergoes an irreversible chemical change once it has been “set” (cured). Epoxy has a desirable combination of producibility properties (excellent adhesion, low levels of volatiles, ease of use, etc.) and mechanical properties (strength, stiffness, ductility, toughness, resistance to the environment, etc.). First-generation epoxies are relatively brittle, exhibiting poor impact damage resistance. Modern epoxies, with toughening modifiers, have relatively good impact damage resistance. High performance epoxies are typically cured at either 250°F (121°C) or 350°F (177°C). Room temperature cures are also possible, but mechanical properties for elevated cures are usually more advantageous. The matrix affects several laminate-level properties such as:

- compressive strength
- impact strength
- damage resistance
- interlaminar strength and resistance to delamination
- amount of pseudo-plasticity for notched laminates (See Chapter 10)
- bearing strength
- strength and stiffness properties for various environmental conditions (temperature, moisture, etc.)
The transverse and shear strength/stiffness properties of an individual composite ply are highly affected by the properties of the matrix. However, for practical multi-directional laminates, the transverse and shear strengths/stiffnesses, at the ply level, are not heavily influenced by the matrix. Therefore, the effect the matrix has on the individual ply is not necessarily indicative of the effect it has on a practical laminate.

The strength of a PMC is significantly affected by temperature and moisture. This is especially true for properties and failure modes that are dominated (or highly affected) by the matrix (interlaminar properties, compression, bearing, etc.). These properties are further discussed in Chapter 21.

Other types of polymer matrix materials include bismaleimide (BMI), polyimide, phenolic, cyanate ester, thermoplastic, polyester, and vinyl ester. Bismaleimides are a subset of polyimides, but other types of polyimides have significantly different properties than bismaleimides. Aside from the mechanical properties, some of the factors to consider when choosing a matrix are service temperature, ease of processing, supportability, and ease of repair. For service temperatures that are higher than appropriate for an epoxy, a composite with a BMI matrix is a typical option for aircraft structures. BMI is more expensive than epoxy and therefore only used when necessary. BMI may also be tougher than epoxies. CYCOM® 5250-4 is a commonly used toughened BMI with a cure temperature of about 400°F (204°C) and may be post-cured to a higher temperature. For cure temperatures higher than this, other types of polymers may be used. For example, some polyimides have a service range of about 600°F (316°C).

1.3.3 Interphase. The interface between the fiber and matrix is known as the interphase. A sizing (or finish) is a coating applied to the fibers before they are combined with the matrix. The sizing protects the fibers during the manufacturing process and improves the bond strength between the fiber and matrix. The interface strength affects various mechanical properties. For example, a strong interface may improve the static strength of a laminate; a weaker interface may improve impact damage resistance via energy-absorbing mechanisms.

1.4 COMPOSITE MATERIALS

1.4.1 Ply (Lamina). A ply (consisting of fibers and a matrix), also known as a lamina or layer, is a composite material. Continuous fibers can be oriented in a single direction (or multiple directions) within the ply. For aircraft applications, plies may be in a prepreg or dry fabric form.

A prepreg is a common form and is created by pre-impregnating (surrounding) the fibers with a resin (matrix) that is in a semi-cured state (B-stage). In this state the fibers and resin are combined but are still flexible enough to be formed and
placed in tooling. After the prepreg layers are laid in place, the laminate is fully cured (the cured resin is referred to as the matrix). At this point the laminate is capable of carrying load. Prepreg forms are tape, slit tape, fabric, sheet, and tow/roving. Slit tape is tape that has been slit/cut to a smaller width. This is beneficial when the structure has compound surface or smaller details need to be formed. Tow/roving are commonly used with filament winding machines. For this book, a composite ply is considered to be a cured layer with fibers in one or more directions; the fibers are oriented in the plane of the ply as shown in Figure 1.4.

Although the use of prepregs is common for large aircraft applications, a layup can also consist of dry fabric layers that are impregnated with an uncured, low viscosity resin. This is known as a wet layup. Wet layups may be considered for repairs but are not commonly used for the original design of structures for large aircraft. Various other manufacturing methods are discussed in Section 1.10.

1.4.2 Unidirectional Ply. For a unidirectional ply, the fibers are all aligned in a single direction (See Figure 1.4). A unidirectional ply is also known as a uni-ply or UD ply. In tape form, it may also be called a uni-tape or a tape ply. Laminates with unidirectional plies have increased static strength and elastic properties compared to laminates with woven fabric plies (See also Chapter 21). Unidirectional plies are frequently used for high performance aerostructures.

The 1-direction (longitudinal) is aligned with the fibers and the 2-direction (transverse) is normal to the fiber direction (See Figure 1.4). The 1-2 coordinate system is used for the individual plies, and the $x$-$y$-$z$ coordinate system is used for the laminate coordinate system (See Section 1.5).

![Figure 1.4](image.png)

**Figure 1.4** Unidirectional ply (not to scale). The fibers are aligned with the 1-direction (longitudinal). The diameter of a carbon fiber diameter is about 0.0002–0.0004 inch (5–10 μm), which is much smaller than a human hair. Fibers are much more closely packed than shown.
1.4.3 Fabric Ply. Fabrics may be in prepreg or dry form. For woven fabrics, such as a plain weave fabric shown in Figure 1.5, the weaving process does not allow the fibers to remain straight. Also, the fibers are not as closely packed as for unidirectional plies. These characteristics reduce the static strength and stiffness of woven fabric plies. This is especially true for compression loading because of the fiber waviness. However, a fabric ply is more easily draped over a compound surface (doubly curved) than is a unidirectional prepreg ply. Uni-tape prepregs with small widths, used with a tape laying machine, are also effective for compound surfaces.

Woven fabrics are often used at the outer layers of a laminate to improve abrasion resistance and also help to prevent delamination when holes are drilled. Woven fabrics also improve resistance to damage from impacts. Because of the additional weaving procedure, the material cost is increased compared to unidirectional plies. However, labor cost may be decreased because the plies are thicker (fewer plies need to be laid up).

As opposed to woven fabrics, the fibers of a multi-directional non-crimp fabric (non-woven fabric) are overlapped but remain straight. In dry form, the fibers are held together by light threads. The result is comparable to overlapping unidirectional plies. Because of the fiber straightness, the stiffness and static strength of a non-crimp fabric are improved compared to a woven fabric. A dry unidirectional non-crimp fabric has all the structural fibers in a single direction. The fibers are held together by light threads. With respect to the fibers, this type of fabric is functionally equivalent to a unidirectional ply.

1.4.4 Carbon/Epoxy. For large aircraft primary structures, the use of carbon fiber reinforcement and an epoxy matrix is common. This material system is known as carbon/epoxy, carbon fiber/epoxy (CF/EP), carbon fiber-reinforced epoxy, or carbon fiber reinforced plastic (CFRP).
1.5 COMPOSITE LAMINATES

1.5.1 Laminate. A laminate consists of two or more plies (laminae). A layup is a processing method where plies are placed on top of each other and is defined by the material system(s), orientations, and stacking sequence of the plies (See also Section 1.10). Because of the similarity between the terms laminate and lamina, the term ply is used throughout this book (instead of lamina). For a typical high performance laminate, the plies (prepreg or dry preform layers with added resin) are consolidated (bonded together) at elevated temperature and pressure, often with the use of an autoclave. There are a variety of other manufacturing methods that may also be used (See Section 1.10).

Although all the plies in a laminate could be oriented with fibers aligned in the same direction, properties such as compressive strength, bearing strength, damage resistance, strength after impact, and transverse strength would be undesirable. Therefore, practical laminates are usually multi-directional, meaning the plies/fibers are oriented in different directions within the laminate. The laminate coordinate system is the x-y-z system, as opposed to the ply’s local 1-2 coordinate system (See Figure 1.6). The ply’s orientation angle is with respect to the x-y-z system (See also Section 1.5.4).

![Figure 1.6 Multi-directional laminate and x-y-z coordinate system (laminate coordinate system).](image-url)
1.5.2 **Hybrid Laminate.** A hybrid laminate consists of plies with more than one material system. For example, carbon fiber/epoxy plies can be used in the same laminate as glass fiber/epoxy plies. This may be done to improve impact damage resistance, reduce cost, improve producibility, improve corrosion resistance, improve notched strength, etc. However, while some properties may be improved via hybridization, other properties may be reduced. Helicopter rotor blades may be hybrid laminates consisting of glass fiber and carbon fiber. Tape plies and fabric plies of the same material system may also be combined, which is classified as a hybrid laminate.

1.5.3 **Fiber Metal Laminate (FML).** Fiber metal laminates are hybrid laminates that have both metal layers and fiber/matrix layers. Some important properties that are affected by an FML are resistance to impact damage, fatigue resistance, corrosion, ability to tailor the fiber/matrix layers, elastic modulus, weight, and fire resistance. The properties of an FML may be better or worse than those of the individual layers.

GLARE® (glass laminate aluminum reinforced epoxy) is a fiber metal laminate that is composed of aluminum layers and glass fiber/epoxy layers (plies). GLARE® is used for primary structures on the Airbus A380. GLARE® may also be used for repairs to aluminum structures. TiGr is an FML that is composed of titanium layers and graphite/matrix layers (carbon/matrix). ARALL is an aramid reinforced aluminum laminate.

1.5.4 **Laminate Codes.** The orientation and position of each ply in a laminate may be expressed in multiple ways. Though there are no universal rules, some of the common ways of representing the ply orientations and the laminate stacking sequence (LSS) are presented in this section. “ASTM D6507: Standard Practice for Fiber Reinforcement Orientation Codes for Composite Materials” may also be considered. A 0° ply has its 1-direction aligned with the laminate’s x-direction, and a 90° ply has its 1-direction aligned with the laminate’s y-direction. The first ply in the sequence is located at the most negative z-position (See Figure 1.7).

![Coordinate system and laminate coding for a [90/45/0] laminate.](image)
1.5.4.1 **Single Material System.** If using just one type of material system, there is no need to specify the material as part of the sequence. The degree symbol is omitted for convenience. Some examples, which are not necessarily indicative of practical laminates, are:

- \([0/0/0/0] = [0_4]\)
- \([0/+45/90/−45/−45/90/+45/0] = [0/+45/90/−45]_S\) — symmetric laminate
- \([0/+45/90/+45/0] = [0/+45/90]_S\) — the use of the “overbar” indicates the laminate is symmetric about the given ply, but the ply with the overbar is not repeated; in this case, there is only one 90° ply
- \([0/90/0/90/0/90] = [0/90]_3\)
- \([0/+45/−45] = [0/±45]\) (upper sign is positioned first)
- \([0/0/+45/−45/+45/0/0] = [0_2/±45]_S\) (upper sign is positioned first)
- The “S” symbol indicates the laminate is symmetric

1.5.4.2 **Hybrid.** The coding rules for a single material system are applicable to hybrid laminates. However, the material associated with each ply must be designated. This may be done with a superscript (or a subscript as per ASTM D6507) as follows:

- \([0^G/45^C/−45^C/90^C]_S\)
  - \(C = \) carbon/epoxy ply
  - \(G = \) glass/epoxy ply

Laminates that contain both unidirectional plies and fabric plies of the same material system are also considered hybrid laminates. An example is:

- \([0^T/45^T/−45^T/90^T]_S\)
  - \(T = \) unidirectional tape ply
  - \(F = \) fabric ply

1.5.5 **Ply Percentages and Fiber Percentages.** For a single material system with unidirectional plies of equal thickness, a simple manner to express a laminate is via a percentage of plies in the standard orientations. Many laminates are composed of unidirectional plies in the 0°, +45°, −45°, and 90° orientations. To use ply percentage coding, there must be an equal number of +45° and −45° plies. The +45° and −45° plies are grouped into a single percentage, termed ±45°. When expressing laminates as ply percentages, *parentheses* are used as opposed to brackets. The form is (%0°, %±45°, %90°). For example:

- \([0/+45/−45/90]_S\) is \((25/50/25)\) or \((25/50/25)%\)
Clearly, this approach cannot fully describe the laminate since the stacking sequence is not defined. For a symmetric and balanced laminate, the in-plane elastic properties can be determined via ply percentages. However, the out-of-plane elastic properties (bending and twisting stiffness) cannot be determined from ply percentages (See Chapter 4).

For fabrics with fibers in multiple directions within the ply, it is not appropriate to use ply percentages. Instead, fiber percentages are used. For example, consider a $[0/0/45]_3$ laminate that consists of plain weave fabric plies. The fiber percentages in the ($0^\circ$, $\pm45^\circ$, $90^\circ$) directions are $(33/33/33)$%. Fiber percentages may also be used for laminates made from unidirectional plies, which is equivalent to using ply percentages. The use of fiber percentages is flexible because it is appropriate for both unidirectional plies and fabric plies.

### 1.6 MATERIAL CHARACTERIZATION

For engineering purposes, a material must be characterized in a mathematical manner. Simplifying assumptions are often made for analytical convenience. This section introduces the basic material types. Chapter 3 provides a detailed mathematical description of the elastic stress-strain relationships of these materials.

1.6.1 **Isotropic.** An isotropic material exhibits properties that are the same in all directions. The elastic properties can be characterized with 2 independent elastic constants (elastic modulus and Poisson’s ratio). Aerospace metals are often approximated as isotropic. This is the simplest material to characterize.

1.6.2 **Orthotropic.** A general orthotropic material has varying properties in its 3 perpendicular planes. In 3D space, the elastic properties for an orthotropic material are characterized by 9 independent elastic constants.

1.6.3 **2D Orthotropic in Plane Stress.** If a general orthotropic material does not have stress in its $z$-direction, it is in a state of plane stress. A ply is typically assumed to be a 2D orthotropic material in plane stress (thin laminates). A 2D orthotropic material can be characterized by 4 independent elastic constants. This material characterization is the basic building block for structural analysis of composite laminates and is further discussed in Chapter 3. Note that a ply is not always in a state of plane stress and that interlaminar stress components may exist (See Chapter 8).

1.6.4 **Anisotropic.** An anisotropic material is the most general type of material. See Chapter 3 for further discussion.
1.6.5 **Homogeneous.** A homogeneous material has properties that are the same at every point. On a macroscopic scale, a ply may be considered homogenous if the individual fiber and matrix properties are “smeared” together. *Macromechanics* assumes that a ply is homogeneous.

1.6.6 **Macromechanics.** Macromechanics considers the ply to be the lowest-level material and does not directly consider the properties of the individual fiber and matrix. The fiber and matrix are effectively “smeared” together to create a homogenous layer (the ply) that is a 2D orthotropic material in a state of plane stress.

1.6.7 **Micromechanics.** Micromechanics is an approach that considers the fiber and matrix as separate materials. Using the properties for the individual constituents, the ply properties (stiffness, strength, etc.) can be analytically determined. Micromechanics solutions are not commonly used for strength prediction because of the lack of accurate predictive capability (See Chapter 9 and Appendix A). However, *some* elastic and hygrothermal properties are relatively well predicted via micromechanics. Though micromechanics solutions are not used for final predictions for aircraft structures, they may be useful for research efforts, trade studies, academic study, or preliminary analysis.

1.7 **GENERAL MATERIAL PROPERTIES**

1.7.1 **Brittle and Ductile Materials.** A brittle material is linear elastic up to the point of fracture. A ductile material exhibits plasticity (the material has significant elongation after yielding). Stress-strain curves for brittle and ductile materials are shown in Figure 1.8.

![Figure 1.8 Stress-strain curves for brittle and ductile materials. Engineering strain shown (as opposed to true strain).](image-url)
Ductility has a significant influence on the static ultimate load capability (complete separation via fracture) of parts with stress concentrations. Consider the uniaxially loaded part with a hole, as shown in Figure 1.9. For both brittle and ductile materials, the initial response exhibits a stress concentration in the vicinity near the hole, peaking at the edge of the hole. See Chapters 10 and 11 for further discussions regarding stress concentrations.

If the material is brittle, fracture occurs at the stress concentration, at a stress level equal to the fracture stress of the material (See Figure 1.10(a)). The initial local fracture immediately propagates through the part, and complete separation occurs. On the other hand, if the material is ductile, the region with the local stress concentration yields and can continue to strain without fracture. This allows the part to accept further loading, until the hole edge location reaches the fracture strain. In turn, for ductile metals, stress concentrations do not significantly affect the ultimate load capability. For a perfectly plastic material, the load carrying capability is only reduced by the amount of area removed by the hole (net section capability). The result is that the ultimate load capability of the perfectly plastic material is far greater than that of the brittle material. This can be observed by comparing the total area under the stress level curves shown in Figure 1.10.

![Figure 1.9](image-url)

**Figure 1.9** Initial stress response for a uniaxially loaded plate with a hole: (a) overall part with hole; (b) top half of part, cut at the middle, showing the stress concentration.
Individual carbon fibers are usually considered to be brittle. Unnotched laminates may also be brittle (See Chapter 9). However, multi-directional composite laminates with a hole do not behave as either brittle or ductile. Rather, the response is somewhere in between. This important distinction is introduced in Chapter 2 and further discussed in Chapter 10.

Note that the previous discussion is with respect to the static load capability. When fatigue loaded, stress concentrations are significant for ductile materials. For metals, stress concentrations are often the origin of fatigue damage and the onset of visible cracking. See Chapters 2 and 24 for further discussion.

1.7.2 Specific Strength. Specific strength is the strength-to-density ratio (or strength-to-weight ratio). When weight is of importance, the use of the specific strength allows for a normalized comparison to be made between different materials. Since composites usually have a lower density than metals, specific strength is often a better comparison approach than absolute strength. For reference, the density of carbon/epoxy is about 0.057 lbm/in³. The density of aluminum is about 0.100 lbm/in³.
1.7.3 **Specific Stiffness.** Specific stiffness is the stiffness-to-density ratio (or stiffness-to-weight ratio). This term is used for the same reasons that specific strength is used.

1.7.4 **Statistical Distribution of Properties.** There are two standard classifications for the anticipated lower bound strengths: A-basis and B-basis. The A-basis, B-basis, and typical properties are defined as follows. Establishing a lower bound strength is especially important for properties that have significant scatter. See Chapter 21 for further discussion.

- A-basis: 95% lower tolerance bound for the upper 99% of a specified population
- B-basis: 95% lower tolerance bound for the upper 90% of a specified population
- Typical: arithmetic mean of a specified population

1.7.5 **Thermal Expansion.** The coefficient of thermal expansion (CTE), \( \alpha \), relates a temperature change to the amount of expansion (or contraction) of a material. In general, the CTE is a function of temperature. This should be considered when performing the structural analysis.

1.7.6 **Moisture Expansion.** The coefficient of moisture expansion (CME), \( \beta \), relates moisture change to the amount of expansion (or contraction) of a material. The CME is also known as the CHE (coefficient of hygroscopic expansion).

1.7.7 **Temperature and Humidity Effects.** The combination of thermal and moisture effects is referred to as hygrothermal effects. While the CTE and CME relate the amount of expansion to temperature and humidity changes, a composite’s stiffness and strength properties are also a function of temperature and humidity. *Strength*, most notably, may be significantly affected by hygrothermal effects (See Chapter 21). This must be considered when sizing/designing composite structures. Stiffness is less affected by temperature and moisture than strength.

1.8 **GENERAL ADVANTAGES OF COMPOSITE MATERIALS**

Composite materials are typically compared to metals when discussing advantages and disadvantages. Although each of the following items are presented separately, all items should be compared *simultaneously* to determine if a composite material is the correct choice for the application. Composite materials are not always superior to metals, and the best material choice may not be obvious. For
1.8 GENERAL ADVANTAGES OF COMPOSITE MATERIALS

convenience, the term *composite* refers to a composite laminate unless otherwise stated. Chapter 2 also compares composites to metals, but the focus is on the analytical differences.

NOTE: The following discussion *may* be applicable to a given application and is presented to inform the reader of various factors to consider.

1.8.1 **Stiffness.** Carbon fiber composites generally have greatly improved specific stiffness (stiffness-to-weight ratio) when compared to metals (See Section 1.11). Glass fiber composites have a relatively low specific stiffness when compared to carbon fibers and metals.

1.8.2 **Strength.** The strength-to-weight ratio (specific strength) of an unnotched (pristine) carbon fiber laminate is better than metals. However, the presence of open holes, mechanically fastened joints, or impact damage significantly reduces the load carrying capability of composite structures. Furthermore, a composite with a polymer matrix has a reduced strength in the hot/wet and cold/dry environments. These conditions reduce the specific strength of carbon/epoxy laminates to a value closer to that of typical aluminum aerospace alloys. Even when considering these effects, modern carbon/epoxy laminates may have a larger specific strength than metals (See Section 1.11).

1.8.3 **Weight.** Weight comparisons are complex and cannot be addressed in a simple manner. Some general considerations are presented in this section.

   Composites are less dense than metals. Therefore, weight can often be reduced when using composites, though not always. Carbon fiber composites have large stiffness-to-weight and strength-to-weight ratios (typically larger than metals). However, composites are sensitive to stress concentrations, impact threats, and the effects of interlaminar stresses. These effects may limit weight savings.

   Aluminum may corrode in the presence of carbon fiber composites. To avoid corrosion of parts that are in contact with carbon fiber composites (such as fittings and fasteners), titanium or steel are commonly used. These denser materials may reduce some of the potential weight savings. To address lightning strike protection, composite structures may require additional aluminum parts. The additional parts would not be needed if the structures were metallic. Even with these considerations, properly implemented composite structures can sometimes reduce the weight of a structure when compared to metals.

1.8.4 **Stealth.** Carbon fiber composites have significant advantages over metals for reducing the radar signature of an aircraft. Most modern military aircraft use composite external structures due, in part, to this characteristic.
CHAPTER 1: INTRODUCTION

1.8.5 Cost. The material cost of carbon fiber is relatively high. However, the unique processing methods for composites may allow for reduced cost via part reduction, lowered assembly cost, less number of fastened joints, etc. Operating cost benefits may be achieved by weight reduction (lower fuel cost) and durability improvements (lower maintenance cost). The long-term operating costs associated with maintenance, repair, inspection, etc. must be considered.

Accurate cost comparisons are not easily made, and many different factors must be considered. Some of the cost factors are material cost, producibility and tooling, assembly, maintenance, design and analysis, testing and certification, repairs, and existing knowledge and databases. In general, composites do not have a clear cost advantage or disadvantage when compared to metals. The most cost-effective solution is a function of the specific application.

1.8.6 Fatigue/Durability. Carbon fiber composites exhibit excellent fatigue properties, outperforming their metal counterparts (provided the loading is in the plane of the fibers). When metal parts crack, they need to be repaired in order to maintain safe operation. For a fixed wing aircraft, carbon fiber composite structures will generally not experience significant fatigue damage during the lifetime of the aircraft. In turn, this can reduce the long-term cost of ownership. However, the fatigue performance of composites can be poor when loaded such that interlaminar stresses are relatively large. Delamination propagation is one such example. See Chapters 8 and 24 for further discussion.

1.8.7 Corrosion. Many composite materials are very resistant to corrosion and do not exhibit the typical stress-corrosion problems associated with metals (See Chapter 22). This can translate to significant reductions in cost when the total life of the structure is considered.

1.8.8 Producibility. Some composite parts are easily produced, while others are not. Since the processing techniques between composites and metals are dramatically different, the producibility options and limitations must be identified early in the design process. Processing of composites can be complex, and problems may not be identified early or easily corrected. Also, composite structures may require more expensive tooling and may have lower yields (increased number of scrapped parts).

1.8.9 Aerodynamic Smoothness and Complex Shapes. Composites may be shaped into aerodynamically smooth surfaces with relative ease. This is especially advantageous for small aircraft because of the relatively low cost of tooling. Also, some shapes that are very complex may be more easily produced with composites.
1.8.10 **Tailored Design.** A simple quasi-isotropic laminate has in-plane elastic properties that are the same in all directions (See Chapter 4). However, the plies can be arranged to specifically match the requirements of the structure. This is known as tailoring. Strength and stiffness can be increased in a certain direction at the sacrifice of other directions. For example, many structures have a primary loading direction. A greater percentage of fibers (bias) can be oriented in the primary direction to withstand the larger loads. This unique capability allows structures to be optimally designed and additional weight savings to be realized. However, standard design rules put limitations on the amount of bias (See Chapter 22). Laminates that are excessively biased should usually be avoided.

1.8.11 **Thermal Expansion.** Many composite materials have very different coefficient of thermal expansion (CTE) values than metals. Most notable is that carbon fiber laminates have a CTE that is nearly zero. This is advantageous for applications where dimensional stability over a large temperature range is desired. Carbon fiber composites are often used for space applications because of this property.

1.8.12 **Electrical Permeability.** Metals are not electrically permeable (ability to pass radio frequencies through a material). However, materials such as glass fiber, quartz fiber, epoxy, cyanate ester, etc., are electrically permeable. Composite materials that have good electrical permeability characteristics are often used for radar covers (radomes). Carbon fibers have poor electrical permeability.

1.8.13 **Aeroelastic Tailoring.** Aeroelastic tailoring consists of tailoring the composite structure to address the effects of aerodynamic loading. For example, when a metal swept-back wing deflects upwards, it also twists. A composite wing can be designed to *couple* the bending and twisting properties such that wing twist will be minimized during upwards deflection (See Chapter 4). A forward-swept wing is particularly vulnerable to twisting at the tip of the wing. The experimental X-29 used a composite wing that was aeroelastically tailored to control wing twist. Aeroelastic tailoring is a specialized topic that is not covered in this book.
1.9 GENERAL DISADVANTAGES OF COMPOSITE MATERIALS

NOTE: The following discussion may be applicable to a given application and is presented to inform the reader of various factors to consider.

1.9.1 Impact Resistance, Residual Strength, and Damage Detection. Compared to metals, laminated composites typically have low resistance to impact damage. After an impact, the individual plies may separate, reducing the residual strength. Furthermore, detecting delaminations is challenging. After a minor impact there may not be a visual indication that delamination occurred. Medium sized delamination (or damage that occurs on the backside of the impact) may be difficult to detect with the naked eye.

1.9.2 Sensitivity to Temperature and Moisture. Stiffness and strength properties of composites are usually sensitive to typical temperature and moisture environments. This is primarily because of the degraded properties of a typical polymer matrix. Failure modes that are dominated by the matrix are especially sensitive to environmental effects. Failure modes that are dominated by the fibers are less sensitive to environmental effects; some fiber types are resistant to environmental effects. See Chapter 21 for further discussion.

1.9.3 Cost. The cost of composites may be advantageous for some applications but disadvantageous for others. Aside from the higher raw material cost, the manufacturing costs are often expensive. This is due to the large amount of manual labor, expensive tooling, equipment, etc. Also, fasteners that are compatible with carbon fiber laminates are relatively expensive (titanium and high strength steel fasteners).

Design/analysis of composite structures is relatively complex, which can increase cost. The cost of establishing composite materials properties is relatively high, and databases are not well established. Due to various challenges, the cost of certification for composite aircraft is greater than for metals.

1.9.4 Through-the-Thickness Strength (Interlaminar Strength). The through-the-thickness strength of laminates is relatively weak compared to metals. Structural components may be subjected to significant interlaminar stresses, which can significantly reduce structural capability. Interlaminar failure modes are also sensitive to environmental effects, processing variability, and exhibit significant scatter (See Chapter 21). Furthermore, specialized analytical methods and additional testing may be required to determine the detrimental effect of interlaminar stresses. See Chapter 8 for further discussion.
1.9.5 **Repairability.** For composite structures, repairability with mechanical fasteners should be considered during the design phase. Failure to do so may make repairs excessively difficult or impossible to perform. Provided repairability is considered, repairs for composite structures are similar to those for metal structures. However, there are special considerations for repairs to composite structures. Bonded repairs may exhibit interlaminar failure modes (See Chapter 13). Mechanically fastened repairs may require more elaborate drilling procedures if the patch material is metal. Also, metal patch repairs to composite structures must consider the difference of stiffness, CTE, corrosion considerations, strength, and failure modes. See Chapter 15 for further discussion.

1.9.6 **Compatibility with Aluminum.** For large fixed wing aircraft, carbon fiber composites and aluminum alloys are the two most common materials used for primary structures. When aluminum is in close proximity to carbon fiber, there is a risk of galvanic corrosion of the aluminum. This can often be mitigated through the use of fiberglass barrier plies, sealants, adhesives, or other methods, but adds cost (See Chapter 22). Also, the very high CTE difference can lead to undesirable stresses in extreme temperature environments.

1.9.7 **Electrical Conduction and Lightning Strike.** Composites typically have low electrical conductivity. If protection from lightning strikes is required, an electrical path on the external structure is required. This can be created by adding a metal mesh to the composite, but adds cost and weight. Additional metal internal structure may be needed to create an electrical path.

1.9.8 **Redistribution of Loads.** Ductile aircraft metals are forgiving materials that usually allow for redistribution of loads via yielding (and associated large deformation) before fracture. Localized failures may be arrested by the surrounding redundant structural members. Composite materials exhibit less deformation before fracture (limited yield-like behavior). In turn, they are less forgiving in the presence of design, analysis, and manufacturing mistakes.

1.9.9 **Analysis Challenges.** Structural analysis of composites may require a higher level of skill than for metals. Composites have several unique failure modes that can present analytical and design challenges. The analysis methods for composites are not as standardized as for metals.

1.9.10 **Mechanical Properties.** Determining the material properties for composites is relatively expensive. Stiffness properties are relatively easy to obtain, but strength properties vary as a function of the layup, environment, failure mode, and other factors (See Chapter 21). Composite specific properties are required to address a variety of failure modes. Also, there is a lack of a centralized material
database for composites. While efforts are being made to develop standard composite material databases, they lag far behind databases for metals.

1.9.11 Part Candidates. High performance laminates have desirable in-plane properties. However, they have limited out-of-plane capability. Parts that have significant out-of-plane loading may not be good candidates to be made with laminates. However, some processing methods allow the fibers to be aligned in all directions. This improves out-of-plane capability, but in-plane capability is sacrificed. See Chapter 22 for further discussion.

1.9.12 Optimization. The thickness of a laminate is a multiple of the ply thickness, which may negatively affect structural optimization. Conversely, a metal part can be produced with any thickness. However, as discussed in Section 1.8.10, a laminate can also be tailored. This can improve structural efficiency.

1.10 MANUFACTURING METHODS

There are various processes used to manufacture composites. Requirements such as cost, time, producibility, and performance should be considered when selecting a process. Knowledge and selection of appropriate manufacturing methods are integral to composite design. Also, the choice of whether to use metals or composite materials is closely linked to the capabilities and shortcomings of different manufacturing processes. There are many books that discuss the topic of manufacturing of composites. 2, 3, 6–8 This book does not attempt to reproduce that information in detail.

A common process used in the aircraft industry is a layup. Here, plies are laid onto tooling (manually or with automation equipment) and then cured. Plies can be pre-impregnated with resin (prepreg) or can be dry fibers with added resin (wet layup). Prepregs are commonly used because they are easier to work with and the resin content and materials properties are better controlled. Pressure may be applied via an autoclave, vacuum, mechanically, or other methods. Elevated temperatures may be obtained via an autoclave, oven, heat blanket, or other methods. Original production parts are often processed differently than repairs. See Chapter 15 for further discussion. For many aerostructures, a prepreg layup that is cured in an autoclave (elevated temperature and pressure) is preferred because it yields high performance structures. The structural properties for a wet layup, cured at room temperature, are not as desirable.
Some of the other processes used in the aircraft industry are:

- Filament winding
- Compression molding
- Resin transfer molding (RTM)
- Vacuum assisted resin transfer molding (VARTM)
- Injection molding
- Pultrusion

1.11 STRENGTH, STIFFNESS, MOMENT OF INERTIA, AND FATIGUE COMPARISONS

In this section, some basic property comparisons are made between carbon/epoxy laminates and typical aerospace metals. This is meant to serve as a brief overview and to provide the reader with perspective. For further discussion, see Chapters 21 and 24.

Isolated carbon fibers can have a specific strength greater than 10 times that of aluminum. However, Figures 1.12 and 1.13 demonstrate that for strength-critical design, the potential weight savings are not nearly as dramatic. The actual weight savings of most in-service composite structures are about 10–25% (where composites are an appropriate choice). This is because:

1. The presence of the matrix adds weight, but does not significantly improve strength.

2. Practical laminates are multi-directional (plies oriented in different directions with the laminate). Plies oriented at 90° to the loading direction add weight but do not significantly improve strength in the loading direction.

3. The presence of a hole, fastener, or delamination (which may occur after an impact) significantly reduces the static load capability and must be accounted for (See Chapter 25). For these same conditions, metals are not affected to the same degree.

4. For composites, extreme environmental conditions can significantly reduce strength properties.

5. Interlaminar stresses (and weak interlaminar strengths) may reduce the structural capability.

6. Other factors as discussed in Section 1.8.3.
A representative carbon/epoxy material system is IM7/8552. IM7 is an intermediate modulus carbon fiber (hence the “IM”), and 8552 is a toughened epoxy; both are produced by Hexcel Corporation. Since IM7/8552 has typical properties for a carbon/epoxy composite, general comparisons to typical aircraft metal alloys are shown in Figures 1.12 and 1.13; the detailed properties for IM7/8552 are presented in Chapter 21. Note that the properties shown in Figure 1.12 and 1.13 are for two specific carbon fiber/epoxy layups and select metal alloys. In general, there are a variety of composite material systems and metal alloys used in the aircraft industry, with ever-evolving material properties.

Data points for the unnotched strength (pristine condition), notched strength (open hole), mechanically fastened joint strength, and compression after impact (CAI) strength are briefly considered in this section. Subsequent chapters address these conditions in greater detail. The CAI strength is related to the barely visible impact damage (BVID) strength. The BVID strength is discussed in Chapters 20, 25 and 26. The specific strength/stiffness comparisons are based on the remote stress, $\sigma$, as shown in Figure 1.11. A quasi-isotropic laminate (elastic properties that are the same in all in-plane directions) and an example tailored laminate (additional reinforcement in the loading direction) are considered for the comparisons. The quasi-isotropic laminate is (25/50/25)% and the tailored laminate is (50/40/10)%. See Chapter 21 for the numerical stiffness/strength values.

Composites are sensitive to humidity and temperature, so these conditions must be considered. The typical environmental conditions to consider are cold temperature, dry (CTD); room temperature, dry (RTD); and elevated temperature, wet (ETW). The static strength of metals is relatively insensitive to typical aircraft temperature and moisture environments. However, metals may be susceptible to stress-corrosion (related to moisture) when fatigue loaded.

![Figure 1.11](image-url) Various configurations used for the specific strength/stiffness comparisons in Figures 1.12 and 1.13. The strength/stiffness properties are based on the remote stress, $\sigma$. 
1.11 STRENGTH, STIFFNESS, MOMENT OF INERTIA, AND FATIGUE COMPARISONS

**Figure 1.12** Tension loading. Approximate specific strength/stiffness for a carbon/epoxy (IM7/8552) laminate and for select metals. For the composite material, the tension strengths are lower for the CTD condition than for the ETW condition. See Chapter 21 for further discussion regarding mechanical properties.

**Figure 1.13** Compression loading. Approximate specific strength/stiffness for a carbon/epoxy (IM7/8552) laminate and for select metals. For the composite material, the compression strengths are lower for the ETW condition than for the CTD condition. For compression loading, the strength of a fastened joint is not listed. This is because it is usually an improvement compared to that of an open hole. See Chapter 21 for further discussion regarding mechanical properties.
1.11.1 **Stiffness Comparison.** The immediate observation is that the specific stiffness of carbon/epoxy is superior to metals (See Figures 1.12 and 1.13). This is especially true for the tailored laminate. The presence of a hole does not affect a part’s stiffness to the same degree as for strength.

1.11.2 **Strength Comparison.** The unnotched specific strength of carbon/epoxy laminate (See Figures 1.12 and 1.13) is far superior to that of metals. However, when considering the following practical conditions and environmental effects, the specific strength is comparable to metals:

- notched strength (laminate with a hole)
- joint strength with mechanical fasteners (for existing joints or to account for future repairs with mechanical fasteners)
- post-impact strength (to meet the static strength requirements)

1.11.3 **Area Moment of Inertia Comparison.** The bending strength and bending stiffness can be compared by evaluating the area moment of inertia (also known as the second moment of area). Composites are typically less dense than metals, which may affect the moment of inertia properties. For example, carbon/epoxy is about 60% as dense as aluminum and 35% as dense as titanium. Consider the moment of inertia for the rectangular plate shown in Figure 1.14. For the same total weight, the moment of inertia is increased by a factor of 8.0 for the material that is half as dense. This allows for greater efficiency for plate stability and plate bending. This amount of increased moment of inertia is only realized for a rectangular cross section.

\[
\rho_1 = 2\rho_2 \quad \text{(density)}
\]

weight is the same

\[
I_2 = 8I_1 \quad \text{(inertia)}
\]

![Figure 1.14](Figure 1.14 Area moment of inertia comparison for different density materials (rectangular cross section).
For built-up structures such as beams, channels, angles, etc., the overall moment of inertia is dominated by the flange’s (cap) distance from the neutral axis. In those cases, the increase in overall moment of inertia for the less dense material is not nearly as significant as that of just a flat plate (for the same overall physical boundary). However, the individual elements of the built-up structure (the flanges and webs) are effectively flat plates. Therefore, the increased moment of inertia of the less dense material has a beneficial affect to local stability of the flange and web.

1.11.4 Fatigue Comparison. Fatigue loading must be considered during the design process. Even if a metal structure is capable of withstanding the static loads, its weight may need to be increased to show acceptance for fatigue loading. For metal structures, fatigue is often a limiting factor and can drive the sizing/weight of the structure. Sizing consists of properties such as the layup (thickness for metals), overall shape/size of stiffeners, stiffener spacing, etc.

As opposed to metals, once a carbon/epoxy structure has been designed to be capable of the static load requirement, it is usually not fatigue critical. This is because carbon/epoxy laminates are resistant to fatigue damage. Additional discussions are presented in Chapters 2 and 24. Note that the comparisons shown in Figures 1.12 and 1.13 do not consider fatigue loading.

REFERENCES


Analysis Overview and Composites Versus Metals

2.1 INTRODUCTION

Chapter 1 provides general comparisons between composites and metals, including basic comparisons for strength, stiffness, and the area moment of inertia. This chapter highlights some of the most important structural analysis differences between carbon fiber/epoxy laminates and ductile metals. In order to do so, building block testing and the concept of a validated analysis method are initially presented. Detailed discussions regarding the analytical solutions for various topics are presented in their respective chapters.

Although not necessary, a background in the analysis of metal structures greatly reduces the learning curve for the analysis of composites. Some resources for the analysis of metal aircraft structures are provided elsewhere.\textsuperscript{1-3}

2.2 ANALYSIS ACCURACY AND RISK OF FAILURE

For a given application (large aircraft, small aircraft, space structures, sporting goods, automobiles, etc.), the desired analysis accuracy and the risk of failure must be established. If weight is not critical, then a conservative approach can be taken, and parts can be heavier than necessary. Because of this, the analysis accuracy and fidelity can be relaxed. Similarly, if failure does not pose a substantial safety or cost risk, then the analysis approach may be relaxed. For a straightforward application, relatively simple formulas may be used, and structural testing may be the primary approach to achieving the desired structure. Also, for some applications, an unanticipated failure after the product is produced may be an acceptable risk. However, for other applications, the risk of unanticipated failure may not be acceptable.
For aircraft structures, where *weight is critical*, the required structural efficiency and analytical accuracy is usually high. This is especially true for large aircraft. In addition, because *safety is of critical importance*, the risk of failure must be very low. To achieve these demanding and competing requirements, a specific blend of analysis and testing for various levels of structural completeness is commonly used. This approach is especially important for composite structures.

### 2.3 BUILDING BLOCK TESTING

Building block testing, and the associated building block pyramid, consists of testing at various levels of structural completeness that may include: coupons, elements, details, sub-components, and components.\(^4\)\(^-\)\(^6\) Lower-level tests establish basic material properties and specimens with single failure modes. Higher-level tests consist of complex structural arrangements. These test levels are discussed further in Chapter 28. A typical building block pyramid is shown in Figure 2.1. This figure demonstrates that many simple specimens are tested at the most basic levels, and fewer tests are performed for higher levels. Hence, this example of a building block resembles a pyramid. In general, there are various numbers of levels and the levels need not be tested in sequence. They may overlap and/or be performed in parallel.

In this chapter, the building block test levels are introduced to demonstrate how they can be used to develop a *validated analysis method*. The use of building block testing for *substantiation* is discussed in Chapter 28.

![Figure 2.1 Example building block pyramid for aircraft structures.\(^5\)\(^,\)\(^6\)](image-url)
2.3.1 **Advantages of Building Block Testing.** Building block testing is typically used for both metal and composite structures and is widely used in the aircraft industry.\(^4\) However, this approach is more important for composites because of the variety of failure modes, some of which may be complex and difficult to predict. Some of the advantages of building block testing are:

- Reduces both cost and risk. Valuable lessons can be learned from the relatively low cost of lower-level testing. This is especially true for “hot spots”, where matrix sensitive failure modes can exist (See Chapter 8). This helps to prevent unanticipated failures for more complex 3D structures. Design concepts can be validated, and design flaws can be discovered early in the design process.

- Validated analysis methods can be developed (optional). To develop a validated analysis method, testing at various levels of structural completeness is required. This topic is discussed in further detail in Section 2.4.

- Building block testing can be used for substantiation of structures (See Chapter 28).

2.3.2 **Analytical Solutions and Building Block Testing.** Building block testing can be used in various ways. The test data may or may not be used in conjunction with an analytical solution to develop a validated analysis method. This key concept is discussed in Section 2.4. For smaller aircraft, simple structures, or secondary structures, it may not be efficient to develop validated analysis methods. For such a case, analytical methods may still be used for the design process, but they need not be validated. However, this carries the risk of unpredicted failure during the substantiation phase. In order to mitigate that risk, the structure may need to be overdesigned. Also, design flaws may not be discovered until late in the development process. Because of this and other reasons, large aircraft programs typically use validated analysis methods to substantiate the static strength requirements (See Chapter 28).

2.4 **VALIDATED ANALYSIS METHODS**

From an engineering perspective, the key concept of a validated analysis method, applicable to both metals and composites, must be discussed. A validated analysis method combines an analytical solution, in a specific manner, with building block testing. This approach is inherently semi-empirical. However, depending on the structure, the amount of required testing can vary considerably. The advantages
of using this approach are discussed later in this section. To develop a validated analysis method, the following aspects are considered:

- appropriate design domain (design space)
- analytical solution (captures the physical behavior of the problem with various degrees of accuracy)
- building block test data (various levels of completeness and complexity)

First, an analysis method must be restricted to an appropriate design domain (design space). That is, if the design deviates too far from the validated range of the analysis method, it is not applicable. Second, an analytical solution and building block test data are combined to produce the validated analysis method. This can be accomplished in various ways, with various amounts of testing and physical accuracy of the analytical solution. In general, with an increase in the physical accuracy of the analytical solution there is a decrease in the required amount of testing that supports the validated analysis method. Note that this also means a validated analysis method need not be physically accurate, physically consistent, or physically insightful, provided there is a sufficient test database to support the method. In fact, the method can even be a curve fit to empirical data, without the use of a physically based analytical solution. In general, the objective is to use analytical solutions up to the point where they are useful and to compensate for any predictive shortcomings with test data. This book presents analytical solutions that are commonly used with validated analysis methods.

At the lower levels of testing, statistically based allowables are developed (See Chapter 21). The initial analysis methods can be developed from the lower-level test data. Once higher-level testing is available, these methods are predicted, verified, and modified if necessary. At this stage, design values are used, which are correlated to a validated analysis method (See Figure 2.2). Design values account for various empirical correction factors, knockdown/fitting factors, cutoffs, etc., and are further discussed in Chapter 21. The objective of the analysis method is to expand the useful design space compared to the available test data. For example, many load cases can be addressed via analysis, which would otherwise be impractical and/or prohibitively expensive to address via testing alone. In essence, the validated analysis method is an analytical solution that is “calibrated” via testing.

To determine the static load capability (static strength) of metal structures, basic material properties and classical analytical solutions can often be combined to provide good agreement to experimental data. Therefore, the analytical solutions for metals, as presented in academia, tend to directly carry over to engineering analysis methods. In turn, a relatively low amount of testing is required to accurately predict the response of more complex structures (See Figure 2.2). However, this
has historically not been the case for composite materials and has caused a great amount of misunderstanding (i.e., academic solutions do not directly translate to engineering solutions). Because of the many failure mechanisms that exist for composite laminates (from microscopic to macroscopic levels), validated composite analysis methods generally require significantly more testing than metals (See Figure 2.2). This is because no amount of analysis, regardless of the fidelity, can account for all failure mechanisms. In turn, many composite analysis methods are semi-empirical that are supported by a successful history of use.

Each failure mode has its own characteristics and associated analysis approach. Failure modes with well-established analytical solutions require a minimal amount of testing, while failure modes that are complex and less predictable require greater amounts of testing for validation. In general, less test data is required for problems that are driven by deflection or stiffness (such as elastic stability) than for strength prediction.

Standard design practice should be used to minimize the required amount of testing and to reduce the risk of unpredicted failures. An increase in the complexity/fidelity of the analytical solution should not be used to compensate for
poor design practices. Also, some failure modes are inherently less predictable than others, which should be accounted for in the design process.

The engineer should recognize that the typical objective of academia and some research is to focus on the actual physical behaviors and to develop corresponding analytical predictions; these pure approaches only require the most basic material properties. While this is a noble objective, it is not always a suitable engineering approach. This is especially true when analyzing composites.

2.4.1 Advantages of Validated Analysis Methods. Large aircraft typically use building block test data to develop validated analysis methods. The advantages of using a validated analysis method are:

1. For large programs, the program risk and cost are usually reduced.
2. Structures can be substantiated by analysis supported by test evidence, which has a variety of significant advantages (See Chapter 28). Substantiation by analysis is the typical approach once validated analysis methods are developed.
3. Analysis methods are validated for accuracy. This allows the structure to be designed in an optimal manner.
4. A database of the material allowables and design values is established. This database can be used for derivative aircrafts and subsequent programs.
5. Failure modes can be correlated to analysis models to enhance general predictably. This improves the understanding of the failure mechanisms and reduces the risk of unpredicted failures.
6. Parametric studies and design trades can be made.
7. Repairs, design changes, and derivative aircrafts can be evaluated with relative ease.

2.5 PRELIMINARY ANALYSIS

Even if a validated analysis method is used for final analysis, preliminary analysis (not validated via the full building block test data) is usually performed first. Preliminary analysis allows the engineer to make predictions during the early phase of the program, even though the complete set of test data is not available. At this stage, only the lowest-level test data may be available, which may be lacking statistical significance.
2.6 LOADS

2.6.1 Single Load Path. Single load path structures are statically determinate. Therefore, the overall internal loads are not a function of the structure’s material. Figure 2.3 shows the overall moment and shear diagrams for a cantilever beam, which is the same for metal or composite structures.

![Diagram of cantilever beam with moment and shear diagrams](image)

**Figure 2.3** Moment and shear diagrams for a cantilever beam: (a) cantilever beam; (b) moment diagram; (c) shear diagram.

2.6.2 Composite Structural Members. A composite structural member can have varying elastic properties within the same structural member. Consider the simple cross section shown in Figure 2.4. Elements 1 and 2 have different elastic properties in the z-direction. For a z-direction load, the deflection of each element is as follows: $P_i$ is the load in each element, $k_i$ is the axial stiffness of each element, $\delta_i$ is the deflection of each element, and $L$ is the length in the z-direction.

\[
\begin{align*}
    P_1 &= k_1 \delta_1 & k_1 &= \frac{A_1 E_1}{L} \\
    P_2 &= k_2 \delta_2 & k_2 &= \frac{A_2 E_2}{L}
\end{align*}
\]  

(2.1)
If strain compatibility is enforced (all elements have the same total deflection, $\delta_1 = \delta_2$), the following relationships exist: $P$ is the total axial load applied to the cross section at the neutral axis, $A_i$ is the area of each element, and $E_i$ is the elastic modulus of each element. For a composite laminate, an effective axial modulus can be used (See Chapter 5):

$$\frac{P_1}{A_1 E_1} = \frac{P_2}{A_2 E_2}$$

(2.2)

$$P = P_1 + P_2$$

When the elastic properties are different for elements 1 and 2, the load in each element is:

$$P_1 = P \frac{A_1 E_1}{A_1 E_1 + A_2 E_2}$$

$$P_2 = P \frac{A_2 E_2}{A_1 E_1 + A_2 E_2}$$

(2.3)

Equation 2.3 demonstrates that the load in each element is a function of the element’s stiffness (general composite). If elements 1 and 2 have the same elastic properties, which is typical for a metal structure, then the simplified solution is as follows ($A_T$ is the total area of the cross section):

$$P_1 = P \frac{A_1}{A_T}$$

$$P_2 = P \frac{A_2}{A_T}$$

(2.4)

**Figure 2.4** Cross section that has elements with different elastic properties.
2.6.3 **General Structures.** A large percentage of aircraft structures consist of redundant structural members (See Figure 2.5). Because there are multiple load paths, the stiffness of each member determines the amount of load it carries. For large aircrafts, finite element models are often used to determine the loads in each structural member. Using the loads, a “detail” analysis, as discussed in Chapter 23, can then be performed.

Note that the skin and stringer may have different effective moduli, even if the same composite material system is used. For example, since the stringers are predominately loaded along their longitudinal axes, the percentage of fibers may be biased in that direction. The skin may have a more general state of loading, and the preferred layup may be closer to a quasi-isotropic laminate (See Chapters 4 and 22). The different elastic properties affect the load distribution among the structural members.

![Figure 2.5 Portion of aircraft structure.](image)

### 2.7 LOAD REDISTRIBUTION

As discussed in Chapter 1, ductile metals are forgiving materials that usually allow for redistribution of loads via yielding (and associated large deformation) before fracture. Localized failures may be arrested by the surrounding redundant structural members. Composite materials exhibit less deformation before fracture (limited yield-like behavior). In turn, they are less forgiving in the presence of design, analysis, and manufacturing mistakes. Therefore, personnel who work with composites must have the appropriate skill sets.
CHAPTER 2: ANALYSIS OVERVIEW AND COMPOSITES VERSUS METALS

2.8 ELASTICITY

When loaded, a material deforms. Elasticity is the ability of the material to resume its original shape after the load is removed. The elastic properties of metals do not vary significantly with orientation and are typically considered to be elastically isotropic (or nearly so). Composites may have significantly varying elastic properties in each orientation (See Chapters 3 and 4). A laminate’s elastic properties are a function of the orientation of the individual plies (laminae) in the laminate. The laminate stacking sequence (LSS) affects the bending stiffness properties of a laminate. A phenomenon that does not occur in metals is that certain laminates exhibit coupling between extension, shear, twist, and bending (See Chapter 4).

Elasticity of metals is represented by straightforward mathematical expressions. Elasticity of composites, on the other hand, is represented by more complex expressions. A computer program is typically used to determine the laminate’s load-deformation characteristics. Classical Laminate Theory (CLT), discussed in Chapter 4, is used to represent the elastic properties of a laminate via the \([A]\), \([B]\), and \([D]\) matrices.

2.9 STATIC STRENGTH (IN-PLANE)

For in-plane loading of unnotched laminates (pristine condition), the ultimate static strength represents the stress level, based on the average through-the-thickness stress at which a material will fracture (for a slowly applied load). Strength of metals is usually similar, but not usually the same, in all directions. The strength of a laminate is a function of the orientation of plies within the laminate. Because of this, strength can vary significantly with a change of the layup.

2.9.1 Unnotched Strength. An unnotched laminate is considered to be a pristine laminate that does not have holes, cracks, impact damage, etc. To determine the unnotched strength, many failure criteria have been postulated, but none are universally accepted. This is due to the various complex failure mechanisms, and other factors, that composites exhibit. Conversely, failure criteria for metals are analytically simpler to apply and have a long history of successful use. Though there is not a universally accepted failure criterion for composites, proposed failure criteria are more appropriate for unnotched laminates than for notched laminates (See Chapters 9 and 10).
2.9.2 **Small Notch Strength.** The term *notched strength* represents the apparent strength of a composite with a through-the-thickness discontinuity, such as a hole or crack. Notched strength is based on the remote load and not the local stresses near the discontinuity. This section considers notches that are “small” (small notch strength is discussed further in Chapter 10). For a ductile metal part with a circular hole, the static ultimate load capability is not sensitive to the effect of local stress concentrations. This is because the ductility allows the local stress concentration to yield without fracture (See also Chapter 1). However, composites are sensitive to the local regions of high stress around the edge of the hole. For this reason, composite structures are often limited by the effects of notch sensitivity for practical applications.

The term *notched strength ratio* (NSR) is defined to be the ratio of the ultimate strength with a notch and without a notch, and is based on the applied remote stress. Because the NSR is based on the remote stress, it also represents ratio of the ultimate load capability (with and without a notch). Figure 2.6 shows that for the ultimate load capability, a ductile material is as capable as its net section (linear response). However, in the presence of a hole, the brittle material has a dramatic reduction of the load capability, even for small $D/w$ ratios. Multi-directional composite laminates are *neither brittle nor ductile*. Rather, they lie somewhere in between (pseudo-plastic behavior at the stress concentration). The NSR is a function of many variables, as discussed in Chapter 10.

**Figure 2.6** Notched strength ratio (NSR) for brittle, ductile, and multi-directional composite laminates. For reference only. The actual response of a laminate is a function of many variables. The NSR is based on the applied remote stress.
2.10 INTERLAMINAR STRENGTH

For a laminated composite, the interlaminar normal strength, or through-the-thickness ($z$-direction) strength, is relatively poor. This is because there are no fibers oriented in the $z$-direction. Similarly, the interlaminar shear strength is relatively low. Interlaminar stresses can cause delamination and an associated reduction of the structure's load capability and stiffness. Conversely, most metals are nearly isotropic (the $z$-direction strength of sheets/plates is not dramatically different than the in-plane strength) and cannot delaminate.

There are several scenarios where interlaminar stresses are significant. These scenarios are discussed in Chapter 8. While interlaminar stresses cannot be eliminated, they can be managed via proper design practice. Interlaminar failure modes are relatively difficult to predict via purely analytical solutions. Designs that are driven by interlaminar failure are predominately validated via building block testing (See Chapters 8, 13, and 28).

2.11 MECHANICALLY FASTENED JOINTS

For the static ultimate load capability, metal joints with mechanical fasteners are often designed for the bearing failure mode to be critical. For multi-row joints, this allows the fastener loads to be evenly distributed among the fastener rows. This occurs because of hole elongation and other factors. Composite laminates, on the other hand, may exhibit a limited amount of bearing hole deformation. In turn, the fastener rows are not assumed to have a uniform load distribution. For the linear solution, equilibrium and stiffness equations are combined to determine the distribution of fastener loads within the joint (See Chapter 11). This approach is similar to that of the linear response of metal joints, which is used for metal fatigue analysis. For composites, nonlinear analysis can sometimes demonstrate a more uniform fastener load distribution, provided bearing failure occurs before a bearing-bypass failure (presented in the following paragraph). In general, because of the limited redistribution of fastener loads, composite joints are less forgiving than metal joints.

For a tension load, an example detail element with a bearing load and a net bypass load is shown in Figure 2.7 (See Chapter 11 for a detailed discussion). The static ultimate load capability of a bolted ductile metal joint is not highly sensitive to the stress concentration that exists at the fastener location. Therefore, the bearing failure mode and the net section tension failure mode are considered to be independent. For a composite laminate, the failure that causes complete separation is driven by the combined stress concentration from the bearing load and
the net bypass load. This *interactive* failure mode is known as a “bearing-bypass” interaction (See Chapter 11). An independent bearing failure is also possible for composites.

The static ultimate capability of metal joints can be determined with relatively straightforward analytical solutions and basic material properties. For composites, special mechanical properties must be determined to predict the bearing-bypass mode (See Chapters 11 and 21). The mechanical properties account for the effects of notch sensitivity, bearing-bypass ratio, installation torque, hole fit, and other factors. Semi-empirical analysis methods are the typical practical approach. Solutions that use a pure physics-based approach are not well accepted (See Chapters 10 and 11).

For composite laminates, special attention to fastener failure is warranted. This is partially because of the low transverse shear stiffness of the laminate, which allows the fastener to bend more than for a metal joint. Also, composite joints are usually thicker than their metal counterparts, which can exaggerate the detrimental effects related to fastener bending and fastener fatigue. Composite laminates also have lower pull-through strengths than metals. This failure mode also requires special attention.
2.12 BONDED JOINTS

The primary analytical consideration for bonded metal joints considers the bondline. More specifically, the shear stresses in the bondline can be evaluated analytically. However, the analytical evaluation of the effect of peel stresses is not well established. Therefore, joints are often designed to minimize the peel stresses.

For composites, the bondline can be evaluated in a similar manner as for metal joints. However, composites joints must also consider the interlaminar failure mode (See Figure 2.8). An interlaminar failure mode is often the critical mode for bonded composite joints because an epoxy matrix is usually weaker and less tough than a high performance epoxy film adhesive. There are various analytical and empirical approaches that address this failure mode (See Chapter 13). While stress analysis solutions are primarily semi-empirical, interlaminar fracture mechanics (ILFM) solutions are physically consistent with the mechanics of interlaminar failure.

For metal skin-stiffener joints, the stiffeners may be mechanically fastened to the skin. In the event that the skin post-buckles, the out-of-plane loads can be reacted by the fasteners. Conversely, composite skin-stiffener joints may be bonded. In the event that the skin post-buckles, large interlaminar stresses can develop at the skin/stiffener interface. This can cause an initial delamination and delamination growth. See Chapter 13 for further discussion.

![Figure 2.8 Interlaminar failure for a bonded composite joint.](image)

2.13 BEAMS

For a homogeneous metal beam, the flanges and webs have the same elastic properties. Therefore, the stresses and deflection can be determined in a straightforward manner. By contrast, the flanges and webs of a composite beam can have different elastic properties. In turn, for a general composite cross section, the axial stiffness and flexural rigidity must initially be determined. Using these properties, the strain/stress and deflection can then be determined for the flanges and webs (See Chapter 16).
2.14 STABILITY

The solutions for stability analysis of laminates can be significantly different from those for metals. For laminates, the mathematical expressions for the elastic stability of plates are more complex than for isotropic materials. This is partially due to the additional elastic properties that define a general laminate. See Chapter 17 for further discussion.

The bending stiffness of an isotropic plate (metal) is a function of its thickness. The bending stiffness of a laminate depends on the laminate stacking sequence (LSS). For example, a laminate with the 0° fibers at the outer surfaces will have different bending stiffness properties than if the 0° fibers are moved toward the midsurface (same thickness laminate). In turn, the buckling load capability, a function of the bending stiffness, will also be a function of the stacking sequence.

Composites laminates exhibit relatively low transverse shear stiffness compared to metals (See Chapter 17). Transverse shear stiffness is dominated by the relatively soft matrix in solid laminates. For this reason, special consideration must be given to the stability of thick solid laminates. This effect also occurs for sandwich structures because the transverse shear stiffness of the core is relatively low (relevant to both metal and composite material sandwich structures).

Column solutions are similar to those used for metals. The common Johnson-Euler solution is often used for both types of materials. Via semi-empirical solutions, crippling of metals is well established. However, this is not the case for composite laminates. Instead, conservative solutions, based on elastic stability, may be considered. However, similar to metals, composites do exhibit crippling behavior. Provided there is sufficient test data to support the analysis method, this can be taken advantage of.

2.15 SANDWICH STRUCTURES

The analytical methods for metal sandwich structures are similar to the methods for composite sandwich structures (See Chapter 18). For both cases, the core is relatively soft, and the transverse shear stiffness should be accounted for. Unlike metal sandwich structures, general composite sandwich structures have elastic properties that vary with the orientation of the sandwich. Also, for a ramped closeout of a composite structure, the effects from interlaminar stresses must be considered. Also, durability of sandwich structures with thin composite facesheets is a major concern (See Chapter 27).
2.16 LARGE CUTS

For large cuts in metal structures, linear elastic fracture mechanics (LEFM) may be used. However, LEFM has not been found to be as accurate for composite structures. Instead, alternative approaches may be considered (See Chapter 19). For both metals and composites, severe damage is sometimes simulated by large cuts.

2.17 POST-IMPACT STRENGTH

For composites, a significant reduction of capability can occur after an impact, even if there is little or no visible damage (non-penetrative damage). This is because the plies may delaminate and the residual compression/shear strengths can be dramatically reduced (See Chapter 20). Conversely, metals do not have a significant reduction of strength after an impact that does not penetrate the structure. To determine the post-impact strength of composites, testing is usually the primary approach. This is because analytical methods are usually insufficient to characterize the extent of damage and to predict residual strength. Chapter 20 further discusses the strength of composites with non-penetrative damage.

2.18 MECHANICAL PROPERTIES

Composites and metals are characterized by different mechanical properties. Simple and effective failure criteria exist for metals, but there are no universally agreed upon failure criteria for composites. To offset the lack of an adequate generalized failure criterion, additional laminate-level testing is performed.

Typical properties for the static loading of metals are as follows. These properties are not significantly affected by the typical temperature range for aircraft structures (See also Section 2.19 and Chapter 21).

\[ E = \text{tensile modulus} \]
\[ E_c = \text{compressive modulus} \]
\[ G = \text{shear modulus} \]
\[ \nu = \text{Poisson’s ratio (or } \mu) \]
2.18 MECHANICAL PROPERTIES

\[ F_{tu} = \text{ultimate tensile strength} \]
\[ F_{ty} = \text{yield tensile strength} \]
\[ F_{cy} = \text{yield compressive strength} \]
\[ F_{su} = \text{ultimate shear strength} \]
\[ F_{bru} = \text{ultimate bearing strength} \]
\[ F_{bry} = \text{yield bearing strength} \]

Typical properties for a composite ply are the following. These properties are significantly influenced by the temperature and moisture environments (See Chapter 21). The elastic properties are also a function of the loading direction (tension or compression), but to a lesser degree than strength properties (See Chapter 21).

\[ E_1 = \text{elastic modulus, longitudinal direction} \]
\[ E_2 = \text{elastic modulus, transverse direction} \]
\[ \nu_{12} = \text{major Poisson’s ratio} \]
\[ G_{12} = \text{shear modulus in the 1-2 plane (in-plane)} \]

\[ F_{1tu} = \text{ultimate tensile strength, longitudinal direction} \]
\[ F_{2tu} = \text{ultimate tensile strength, transverse direction} \]
\[ F_{1cu} = \text{compressive strength, longitudinal direction} \]
\[ F_{2cu} = \text{compressive strength, transverse direction} \]
\[ F_{12} = \text{in-plane shear strength} \]

\[ e_{1tu} = \text{tensile strain allowable, longitudinal direction} \]
\[ e_{2tu} = \text{tensile strain allowable, transverse direction} \]
\[ e_{1cu} = \text{ compressive strain allowable, longitudinal direction} \]
\[ e_{2cu} = \text{ compressive strain allowable, transverse direction} \]
\[ e_{12} = \text{in-plane shear strain allowable} \]
In addition, *apparent laminate-level* properties must be determined. This is because the ply properties, coupled with a failure criterion, are not sufficient to accurately predict the laminate-level strength. This is especially true for laminates with a hole or a fastener (See Chapters 10 and 11). The basic laminate-level properties are (See Chapter 21):

\[
\begin{align*}
F_{UNT} &= \text{unnotched tension strength} \\
F_{UNC} &= \text{unnotched compression strength} \\
F_{OHT} &= \text{open hole tension strength} \\
F_{OHC} &= \text{open hole compression strength} \\
F_{FHT} &= \text{filled hole tension strength} \\
F_{FHC} &= \text{filled hole compression strength} \\
\epsilon_{UNT} &= \text{unnotched tension strain allowable} \\
\epsilon_{UNC} &= \text{unnotched compression strain allowable} \\
\epsilon_{OHT} &= \text{open hole tension strain allowable} \\
\epsilon_{OHC} &= \text{open hole compression strain allowable} \\
\epsilon_{FHT} &= \text{filled hole tension strain allowable} \\
\epsilon_{FHC} &= \text{filled hole compression strain allowable} \\
F_{br} &= \text{bearing strength}
\end{align*}
\]

Also, composite specific tests are required to determine the capability of parts with significant interlaminar stresses (See Chapters 8, 13, and 21). The post-impact strength is also a property that is unique to composites (See Chapters 19 and 21).

### 2.19 ENVIRONMENTAL EFFECTS

For the typical subsonic aircraft environment, metal properties are not significantly affected by temperature and moisture (discounting local heat sources). However, metals may be susceptible to long-term effects of moisture (corrosion). Stress-corrosion cracking, which occurs when a metal structure is fatigue loaded in a corrosive environment, is of concern.

The static strength of a composite laminate is relatively sensitive to the immediate effects of temperature and moisture ingressation (See Chapter 21). The elastic properties are also affected, though usually to a lesser degree. The sensitivity of the *matrix* (often an epoxy) to extreme temperature/moisture environments is the primary reason for reduced composite properties. Laminate properties that are highly influenced by the matrix, such as interlaminar properties, are most affected by extreme environments (See Chapter 21).
2.20 FATIGUE LOADING

This section compares fatigue of metals to fatigue of composites. A more complete discussion regarding fatigue of composites, and additional comparisons between metals and composites, is provided in Chapter 24.

For metals, fatigue-related requirements often drive sizing (geometric properties such as thickness and overall shape/size). Conversely, carbon fiber composites for many aircraft structures are not usually sized by fatigue requirements. For well-designed carbon fiber structures, significant fatigue damage does not usually occur for fixed wing aircraft (See Chapter 24). However, glass fibers and aramid fibers are not as resistant to fatigue loading as carbon fibers.

2.20.1 Metals. For ductile metals, stress concentrations do not significantly affect the static ultimate load capability (See Chapter 1). However, when fatigue loaded, microscopic damage can occur at stress concentrations (door and window cutouts, open holes, fastener hole locations, internal radii, etc.). After a sufficient number of fatigue cycles, this microscopic damage can eventually develop into an initial through-the-thickness crack (See Figure 2.9). Metals are sensitive to fatigue damage when the local stresses are tensile-tensile (result of tension-tension loading for simple parts/specimens) and tensile-compressive stresses, but are not sensitive to compressive-compressive stresses.

For metal fatigue, analytical solutions are relatively well established. This is the case for both crack initiation and crack propagation. For crack initiation, the stress-life approach may be used for large cycle fatigue, and the strain-life

![Figure 2.9](image) Through-the-thickness cracks in a metal part. The cracks typically originate at stress concentrations and may propagate when additional fatigue loads are applied.
approach may be used for short cycle fatigue. Miner’s rule and modified forms of Miner’s rule are appropriate for the crack initiation stage.

For many metals, once a through-the-thickness crack has initiated, then predictable and stable crack growth (crack propagation) will occur upon further fatigue loading. However, this is not true for some high strength steels (See Chapter 26). For metals that do exhibit stable crack growth, linear elastic fracture mechanics (LEFM) can be used to predict the growth rate. The residual strength, as a function of crack length, is also predictable via LEFM. Metals also exhibit crack growth retardation due to crack tip overloads (composites do not exhibit this phenomenon). LEFM can be used to determine the number of cycles before a crack reaches a critical length.

2.20.2 Composites. For composites, damage that initiates from fatigue loading is very different from metals. As opposed to the formation of a well-defined through-the-thickness crack, general degradation of the fiber and matrix occur in the form of matrix cracking, delamination, fiber breakage, and interfacial disbonding. Unlike metals, there are no well-established analytical methods to address generalized fatigue of composites (See also Chapter 24).

For in-plane loading of laminates (load is reacted primarily by the fibers), carbon fiber composites exhibit better fatigue performance for open holes and fastener hole locations than metals; in general, the $S$-$N$ curve is flatter for composites. For fastened joints used for fixed wing aircraft, carbon fiber laminates are not usually fatigue critical (See Chapter 24). However, fatigue of the metal fastener may be critical if the fastener loads are relatively high (See Chapters 11 and 24). Compared to metals, the threshold for fatigue damage growth is larger for composites. However, once the threshold has been exceeded for composites, the growth is rapid. Conversely, the growth rate for metals is not as rapid and is relatively stable.

Fatigue of composites is often concerned with loading that causes significant interlaminar stresses (See Chapter 24). For example, after an impact a laminate may delaminate. Delamination growth may occur when the sublamine(s) buckle. This can occur when the damaged laminate is loaded in compression or shear, but does not occur when loaded in tension.
2.21 DAMAGE TOLERANCE

This section compares damage tolerance (DT) for metals to DT for composites. A more complete discussion regarding damage tolerance for composites is provided in Chapter 26.

2.21.1 Metals. For metal structures, the primary damage tolerance concern is the presence of through-the-thickness cracks that grow and coalesce, reducing the structure’s residual strength and stiffness. Cracks may initiate at locations with stress concentrations because of fatigue loading. They may also occur from undetected flaws, accidental damage, or corrosion. These cracks may grow under cyclic loading that causes the crack to open (tensile crack tip stresses). This predominately occurs from tension loading and/or out-of-plane bending. Metal alloys are susceptible to corrosion, which can exaggerate crack growth (stress-corrosion cracking). Multiple site damage (MSD) is of concern because cracks can link up and become a single large crack. Linear elastic fracture mechanics (LEFM) is a well-established method to predict stable crack growth and the residual strength for metals. Stress intensity factors, fracture toughness, and crack propagation growth rates are used in the analysis.

While a detailed visual inspection method is often part of the damage tolerance approach, small cracks underneath fastener heads/tails are not visible when the fastener is installed. Therefore, other inspection methods are more appropriate for small cracks at fastener locations (such as eddy current testing). The rate of damage growth determines the frequency/type of inspections. In other words, the approach is deterministic.

In order to contain damage that occurs from crack growth, the size of a metal part may be limited. This prevents continued crack growth and is part of a damage tolerance strategy. For composites, relatively large parts are possible. This is because damage propagation does not typically occur (See Chapter 24).

2.21.2 Composites. For composites, the primary damage tolerance concern is from accidental damage. Impacts may penetrate a laminate, reducing the structure’s capability. Even if a laminate is not penetrated, the capability may be significantly (and immediately) reduced because of delaminations, matrix damage, fiber damage, and fiber/matrix disbonding. For sandwich structures, additional damage mechanisms are facesheet-to-core disbonding, core crushing and/or core fracture, and moisture/fluid ingestion.

In general, damage tolerance of composites focuses on the residual strength in the presence of various degrees of damage (See Chapter 26). Damage growth is usually less of a concern, and a “no-growth” approach is frequently used (although a slow-growth approach is also possible). Conversely, damage tolerance for metals usually allows for stable and predictable crack growth, where the residual strength slowly declines (See also Chapter 24).
2.22 STRUCTURAL SIZING

In general, there are a variety of load cases, environments, failure modes, etc., to consider for aircraft structures (both metals and composites). Each structural member has its own unique requirements and conditions that drive the sizing. Sizing consists of properties such as the layup (thickness for metals), overall shape/size of stiffeners, stiffener spacing, etc. This section considers some trends for sizing drivers for metals and composites. However, these trends may not be applicable to all structures. See Chapter 23 for additional discussion.

2.22.1 Metals. The sizing drivers for metals may be related to the static load conditions (ultimate load capability and residual strength capability after cracking/damage) or fatigue-related requirements. For example, the tensile fatigue-related stresses for the upper wing skin are relatively small. Therefore, the static ultimate load requirement usually drives the sizing. Because of this, a high static strength alloy, such as a 7000 series aluminum, is often used. For the lower wing skin, the tensile fatigue-related stresses are relatively large. Therefore, fatigue-related requirements often drive the sizing (as opposed to the static load conditions). For this case, a material with superior crack growth properties is usually preferable to a material with a higher static strength. Because of this, a 2000 series aluminum alloy is often used for the lower skin. However, note that some modern 7000 series aluminum alloys have excellent crack growth properties as well. In general, many metal structures and structural details are sized by fatigue-related requirements related to durability and damage tolerance.

2.22.2 Composites. The sizing drivers for composites are often related to static load conditions (ultimate load and residual strength after damage). These requirements are discussed in Chapters 24–27 and an overview is provided in Chapter 23. Composites are generally resistant to damage due to fatigue loading. To meet the static strength requirements, civil aircraft structures are assumed to have damage that is not detectable, which may drive sizing. For composites, the most damaging case (for undetectable damage) is typically from barely visible impact damage (BVID). Also, structures are usually designed to allow for a repair with mechanical fasteners, which may affect sizing (See Chapter 22). Durability considerations may also affect the minimum thickness of structures, especially for the facesheets of a sandwich structure. In all these cases, the structural capability is far less than the unnotched capability. In other words, aircraft structures must consider a variety of effects that significantly reduce the capability compared to that of a pristine structure.
REFERENCES


Part 2 (Chapters 24–28) discusses the following aspects of composite aircraft structures:

- fatigue loading and associated empirical approaches (as opposed to analytical approaches)
- structural requirements related to safety (static strength and damage tolerance)
- durability objectives (and also the design of sandwich structures)
- structural substantiation

Some of these topics are involved and have subtle aspects to them; the information provided in Part 2 is not meant to be exhaustive. Composites have not reached the same level of maturity as metals, and so the requirements and substantiation approaches are various and still evolving. The focus is primarily on civil aircraft; this is because of the relative maturity and public availability of the relevant documents.
Index

A
A, B, D matrices, 85–93
A, B, D matrices (rotation of stiffness/compliance), 102, 104
A4EI, 302, 314
A4EJ, 218, 258
A-basis
(see Material variability)
Abrasion, 9, 12, 375, 537, 580, 598
Accelerated testing, 611, 657
Acceleration factor
(see Load enhancement factor)
Accidental damage, 53, 323, 335, 524, 572, 577, 590
Acoustic, 437, 438
Adhesion, 280–282, 324, 359, 651
Adhesive material
film, 46, 317, 344
foam, 317, 344
paste, 317, 344
properties (FM-73 and FM-300K), 308
versus matrix (resin), 306, 325, 329–331, 344
Adhesive models, 294, 308
Adhesive spew, 312
Adhesive thickness, 307, 311, 317, 344
ADL
(see Allowable damage limit)
Aerodynamic smoothness, 22, 367
Aeroelastic, 23, 545, 546
Airbus, 5, 14
Airframe, 6, 601, 609
Allowable damage limit (ADL), 366, 369, 571, 581–583, 588
Allowable defects/damage, 571, 584
Allowables, 37, 49, 168, 498, 500
stress versus strain, 509
versus design values, 166, 511
Aluminum
2024, 29, 54, 524, 554
7075, 29, 54, 524, 554
compatibility with composites, 8, 14, 21, 25, 265, 346, 370, 375, 379, 538, 602
properties, 19, 39, 524
Analysis considerations, general, 541–544
Angle of twist, 400
Angle-ply laminate, 152
Anisotropic, 16, 62, 101, 113
Anticlastic curvature, 90–92, 129–138, 401, 430, 443, 458, 659, 666
Anti-peel fasteners, 317, 344, 349, 362, 564
Antisymmetric laminate, 99, 100
Apparent properties, 43, 50, 199, 294, 307–312, 492, 497–499, 504, 508, 509
Applications
civil (see Civil aircraft)
military (see Military aircraft)
other, 33, 361, 534
space, 23, 33, 361, 534, 635
ARALL, 14
Aramid fibers
general, 8, 14, 265, 513, 538, 552, 598, 602
Kevlar, 7, 8, 513, 539, 602
Korex, 602
Nomex, 7, 8, 462, 602
Area moment of inertia, 30, 87, 91, 124, 388, 437
INDEX

Arrested-growth  
(see Fatigue)  
AS4, 8, 249, 513, 554, 555, 559  
ASTM standards  
D1002, 283, 307  
D2344, 508, 512, 518  
D3039, 512  
D3518, 512  
D3762, 657  
D5379, 406  
D5528, 333, 508  
D5656, 307, 314  
D5766, 512  
D5961, 232, 233, 264, 504, 512  
D6115, 350  
D6415, 158, 508, 512, 518  
D6484, 512  
D6507, 14, 15  
D6641, 512  
D6671, 333, 508  
D6742, 267, 268, 512  
D7136, 512  
D7137, 512  
D7248, 232, 240, 247, 248, 252  
D7291, 330  
D7332, 234  
D7905, 333, 508  
E229, 307  
Asymmetric laminate  
(see Unsymmetric laminate)  
ATCAS, 264, 269  
Autoclave, 13, 26, 376, 653  
AV-8B, 4, 250, 256, 535  
Average stress criterion, 201  
Axial stiffness  
sandwich structures, 444  
solid laminate cross sections, 387, 659  

B  

B-2, 3, 4  
Back out (back calculate), 158, 306, 328, 330, 351, 515  
Balanced laminate, 94, 98, 536  
Ballistic, 491, 580  

Barely visible impact damage (BVID)  
damage tolerance, 583  
definition of, 492, 508, 587  
dent depth, 588  
effective open hole analysis, 252, 492, 494  
fatigue, 558–562  
simulation for testing, 616  
sizing, 54, 252, 253, 526, 544, 546  
structural requirement, 526, 571, 583  
versus ADL, 588  
Bathtub fitting, 215, 531  

B-basis  
(see Material variability)  

Beam-column, 399  

Beams, 383  
coefficients for various cases, 391  
deflection, 389–391, 446–448  
sandwich structures, 443  
section properties, 386, 444, 659  
solid laminate cross sections, 383  
stability, 399  

Bearing  
cosine pressure distribution, 241, 242, 253  
failuer mode, 44, 232–237, 257, 260–263  
fatigue, 270, 556, 557  
finit width correction factor, 242  
hole deformation, 260, 557  
load, 45, 212, 216–243  
reference stress, 234, 504  
strength, 49, 504–507, 518, 523  
stress concentration, 241–244  
stress field, 253–255  

Bearing-bypass, 44, 238–256  
compression, 251–253, 255  
failuer mode, 232, 260–263  
multi-directional loading, 253–255  
tension, 238–251, 253  
tests, 246, 247, 252  

Bending modulus, 124, 125
Bending stiffness, 129
built-up structures, general, 137
plates (laminates), 30, 90, 124, 129–137
sandwich structures, 443, 455, 474, 659
solid laminate cross sections, 386–391, 659
unsymmetric laminates, 134–136
Bend-twist coupling
(see Coupling properties)
Biaxial, 167, 170, 201, 253, 371, 374, 410, 462, 491, 532
Bifurcation buckling
(see Plate stability)
Bi-material interface, 338
Bird strike, 491, 580, 584
Bismaleimide (BMI), 10, 538, 559, 603
BJSM, 253–256, 258, 637
Black aluminum, 100
Blind fasteners, 265, 371, 378
Blistering, 377, 654
Boeing 777, 4, 5
Boeing 787, 4, 5, 372
Bolt
(see Fastener)
Bolt bending
(see Fastener)
Bolted joints
(see Mechanically fastened joints)
Bond, definition, 324
Bond, special consideration, 590
Bonded composite joints, 323
critical mode, 325
design, 342–347
failure modes, 46, 281, 325, 335
initial flaw, 335, 337, 341, 342
processing, 651
repairs, 363, 374–380, 535, 590
stress analysis versus fracture mechanics analysis, 329
thin versus thick adherends, 290, 343
VCCT, 338–342
Bonded joints versus fastened joints
general, 357–363
repairs, 363, 376–379
Bonded metal joints, 277
A4EI, 302, 314
adhesive models, 294, 308
analysis overview, 283
design, 316–318
durability, 289, 297, 301, 312, 315
elastic stress distribution, 285–293
elastic zone, 295–299, 312
elastic-plastic analysis, 294–299
failure modes, 281
inherent flaw, 313
load-transfer joint types, 279
peel stress (bondline), 277, 278, 281, 284, 304–306, 317, 326, 344
plastic zone length, 295–298
processing, 651
scarf joints, 279, 300, 318
shear deformable adherends, 293
shear lag theory, 286
shear stress (bondline), 278, 281, 285–303
thermal loading, 296
thin versus thick adherends, 290, 316
Borescope, 371, 586
Boron
fiber, 3, 8, 379, 513
repairs, 379
BREPAIR, 371, 372
Brittle
epoxy (see Epoxy)
fibers, 19
materials, 17–19, 43, 195, 196, 237
metals, 578
unnotched laminates, 19, 196
B-stage, 10
Buckling
(see Stability)
Building block testing, 33–38, 606–609, 612–617
Built-up, 31, 137, 383, 423, 536, 607
Bulk material, 6, 7
INDEX

BVID
(see Barely visible impact damage)
Bypass load, 45, 212, 238–240

C

CAI
(see Compression after Impact)
Calibrate, 36, 158, 205, 230, 249, 255, 479, 485
Cap
(see Flange)
Carbon fiber, 12
applications, 3–7, 12
ASI, 507, 552, 553
AS4, 8, 249, 513, 554, 555, 559
IM7, 8, 28, 513–522, 559
IM8, 8
T300, 8, 259, 505, 507, 554–559
T650, 8
T800, 8, 504, 559
types, 7, 513
versus graphite fiber, 7
Carbon fiber reinforced plastic (CFRP), 5, 7, 12
Carbon/epoxy, 12
Carpet plots, 95, 119, 165, 533
axial modulus, 120, 122
CTE, 634
fiber dominated failure, 165
general design, 533
Poisson’s ratio, 121, 123
shear modulus, 121, 123
stress concentration factor, 191
C-channel, 389, 417, 418, 659–671
Cell (honeycomb), 441
Certification, 372, 564, 605, 615
Characteristic damage state (CDS), 493
Characteristic dimension, 201–204, 255, 256, 329, 481, 485
Characteristic length
(see Characteristic dimension)
CHE
(see Coefficient of moisture expansion)
Chopped fibers
(see Discontinuous fibers)
Civil aircraft
applications, 4–7
durability, 596
fastened joints versus bonded joints, 361, 378
fatigue, 550, 562, 564
fitting factor, 259
operating temperatures, 501
post-buckling, 414
post-impact strength, 493
repairability, 534, 535
requirements, damage tolerance, 477, 579–591
requirements, static strength, 569–575
sizing, 546
structural substantiation, 605–618
Clamp-up
bearing strength effect, 505
bearing stress calculation, 241–243, 253
failure criteria effect, 183, 246, 271, 498
fastener flexibility, 223
fatigue considerations, 270, 556
FHC effect, 504
FHT effect, 503
friction, 216, 238, 241, 243
loss of clamp-up (relaxation), 216, 236, 268, 505, 615
preload, 233, 235, 505
torque, installation, 268, 505
Classical Laminate Theory (CLT), 79–89, 108, 119, 139, 142, 166, 497, 633, 669
assumptions, 83
coordinate system, 83, 84
loading, 84, 140
physical meaning, 86
Clearance hole, 267
Cleavage-tension failure, 234, 263, 264
Closed sections, 670
Closeouts
(see Sandwich structures)
CLT
(see Classical laminate theory)

CME
(see Coefficient of moisture expansion)

Coarse-grid
(see Loads model)

Co-bond, 347, 350, 384, 590, 652

Co-cure, 37, 349, 384, 590, 652

Coefficient of hygroscopic expansion
(see Coefficient of moisture expansion)

Coefficient of moisture expansion
(CME), 20, 141
laminate, 633
ply, 141, 625

Coefficient of thermal expansion (CTE), 20
composites versus metals, 23, 25, 346, 370, 375, 379, 635
joints, 230, 286, 296, 346
laminate, 513, 633, 634
metals, 524
ply, 141, 513, 625, 626

Cohesion failure, 281, 294, 315, 324

Coin tap testing
(see Tap testing)

Cold temperature, dry (CTD), 501, 502
Cold/dry
(see Cold temperature, dry)

Column spacing, fastener, 218, 237, 242, 244, 248, 249, 262

Columns
analysis flowchart, 428
effective length, 425
elastic, 424
derixity, 425
inelastic, 423, 429, 472
intermediate, 427
long, 424
sandwich structures, 473
short, 427

Companion coupons, 656, 657

Complex variable solution for open holes, 637

Compliance matrix
general material, 60
isotropic material, 61, 91
laminate, 88, 97, 104
ply, 66, 74

Component (structure), 34, 163, 606–617

Composite materials
advantages, 20
aircraft usage, 3–6
definition of, 6
disadvantages, 24

Composites versus metals, 33
analysis methods, 33–54
density, 19
fatigue, 31, 51, 54, 551, 554, 560–565
mechanically fastened joints, 44, 215, 216–218, 236, 238, 248, 260–271
sizing, 31, 54, 555, 565
stability, 47, 406, 414, 419–423, 426, 430
static strength, 28–30, 42
stiffness, 28–30, 42

Composite-to-metal joints, 303, 342, 346

Compound surface, 11, 12

Compression after impact (CAI), 29, 252, 489, 492, 508, 518, 559

Compression molding, 27

Compression strength
metals, 48, 524
notched laminates, 50, 200, 502, 518–522, 526
ply, 49, 168, 514
unnotched laminates, 50, 176, 502, 518–522

Computational solutions
A4EI, 302, 314
A4EJ, 218, 258
BJSFM, 253–256, 258, 637
open hole stress field, 637
VCCT, 338–342

Concurrent engineering, 531

Containment ring, 8

Contamination, 572, 590, 652, 653
Continuous fibers, 7, 10
Control surfaces, 3, 5, 438
Coordinate system
  beams, 386
  honeycomb cores, 441
  laminate, 13
  ply, 11, 65
  sandwich structures, 439
Core
  crushing, 379, 460–462, 598–602
  design considerations, 602
  effective properties, 441
  fracture, 460, 598–600
  materials, 435, 462, 602
Core shear instability, 469, 473, 475
Corrosion
  bonded joints, 346, 358, 362
  boron fiber, 8, 379
  carbon fiber, 25, 538, 551
  composites, 22, 25, 346, 538, 553, 603
  core, 539
  fastened joints, 265, 269, 360
  galvanic corrosion, metals, 8, 25, 265, 538
  glass fiber, 379, 538, 539
  repairs, 370, 375
  stress-corrosion, metals, 22, 28, 50, 53, 365, 538, 553, 597
Corrosion prevention, 269, 346, 539
Cosine pressure distribution (bearing), 241, 242, 253
Cost, 22, 24
Countersink in laminates, 234, 260, 267, 270, 507
Countersunk head fastener
  (see Fastener/flush head)
Coupling properties
  bend-extension, 93, 94, 536
  bend-twist, 93, 98, 135, 403, 455, 537, 669
  extension-extension, 61, 90
  general, 62, 90, 93
  in-plane/out-of-plane coupling, 86, 93, 96
  isotropic material, 61, 91
  shear-extension, laminate, 93–95
  shear-extension, ply, 61, 62, 74, 76
  shear-twist, 93
  twist-extension, 93, 94, 536
Coupon test specimens, 34, 163, 200, 498, 606, 608, 613, 657
Cowl, 438
Cracks, metal
  initiation, 51, 196, 238
  LEFM, 52, 53, 478, 479
  propagation (growth), 51–54, 350, 380, 550, 563
  retardation, 52, 610
  through-thickness (see Cuts, through-thickness)
Crashworthiness, 554, 605
Creep, 176, 297, 312, 315, 596
Crippling
  of elements, 419
  of sections, 419, 420, 422
Critical crack length, 578
Critical damage threshold (CDT), 581, 583, 587
Critical structures, 438, 570–573, 590, 600
Cross sections
  properties for basic solutions, 386–389
  properties for general solutions, 659
  stability, 416–423
Cross-ply laminate, 154
CTD
  (see Cold temperature, dry)
CTE
  (see Coefficient of thermal expansion)
Cure, 9, 26
  pressure, 26, 376, 377, 653
  repairs, 375–379
  temperature, 9, 10, 26, 375–379, 653
Curvature from loading (CLT), 85, 88, 145, 632
Curvature, restrained
  (see Restrained curvature)
Curve fitting, 36, 204, 326, 479
Curved beam strength (CBS), 158, 508, 518
Curved laminates, 156, 329, 550
Cutoff
  design value, 36, 166, 422, 511
  energy level (see Energy cutoff level)
Cutouts
  (see Large cutouts)
Cuts, through-thickness, 205, 206, 477–485, 527, 585
Cyanate ester, 10, 23

D
DaDT
  (see Durability and Damage Tolerance)
Damage detection, 24, 580, 583, 588
Damage progression, 174–184, 199
Damage resistance
  general, 597–600
  interphase effect, 10
  laminates, 13, 14, 536
  matrix effect, 9, 365
  sandwich structures, 601, 602
Damage threats
  in-service, 580
  manufacturing, 572
Damage tolerance, 53, 577–593
  categories, 583
  principles, 581
Database, material, 24, 25, 38, 498, 612
Defects
  allowable defects, 571, 584
  manufacturing, 463, 499, 571, 572, 584
Deflection
  beams, 389
  flat laminates, 136
  sandwich structures, 443
Deflection-critical structures, 533, 601
Delamination
  containment fasteners (see Anti-peel fasteners)
  general, 28, 150, 325
  growth, 350, 557–560
Density, 19, 513, 523
Dent depth, 587–589, 600

Design
  bonded composite joints, 342–347
  bonded metal joints, 316–318
  general guidelines, 531–539
  mechanically fastened joints, 259–270
  repairs, 376
  sandwich structures, 601, 602
Design drivers
  (see Sizing (design))
Design limit load (DLL), 527, 544, 550, 558, 570, 573, 583–585, 589, 590, 612
Design space, 36, 37, 533, 534, 613, 614
Design ultimate load (DUL), 525–527, 544–546, 570–573, 583
Design values, 36, 166, 422, 511
Destructive testing, 580, 656, 657
Detail analysis, 541, 542
Detail test specimens, 34, 608
Detailed visual inspection, 53, 586–590
Determinant structures
  (see Single load path structures)
Diagonal tension, 416
Differential bending, 400
Dimpling
  (see Intracell buckling)
Disbond, definition, 324
Discontinuous fibers, 7, 532
Discrete source damage, 477, 485, 583–585
Doors, 51, 438, 485
Double cantilever beam (DCB) test, 332, 333, 657
Double shear bonded joints, 280
  fasteners, 215, 221–223, 228, 235, 506, 648
Double-lap joint, 214, 268, 279, 291–298, 304, 317, 343
Doubler
  (see Patch)
Drilling, 8, 12, 25, 378, 537
Dropped tools, 490, 572, 580, 584, 597
Drying of composites, 377, 379, 601, 653, 654
Ductile material, 17–19, 43, 195, 237, 295
Durability, 312, 595–603
Durability and Damage Tolerance (DaDT), 577

**E**

Eccentricity, 160, 214, 215, **268**, 278–280, **290**, 316
Eddie-bolt, 265
Eddy current testing, 53
Edge band, 439, **454**, **462**, 485, **602**
Edge closeout
(see Sandwich structures)
Edge crack torsion (ECT) test, 334
Edge distance, 234, **263**, 372, 518, 523
Edge effects
(see Free edge)
Effective properties
  bending modulus, 124, 125
  CME, 633
  CTE, 633
  in-plane, 111–123
Effects of defects, 177, **269**
E-glass, 8, 513
(see also Glass fiber)
Elastic foundation (facesheet wrinkling), 462
Elastic modulus
  effective moduli (see Effective properties)
  isotropic material, 61
  orthotropic material, 62
  ply, 65–67, 513, 515
Elastic zone, bonded joints, 295–299, 312
Elasticity, 42
  laminate, 57
  material, 79
Elastic-plastic bondline analysis, 294–299
Electrical conductivity, 7, **25**, 367
Electrical permeability, 7, **23**, 367
Element
  cross section, 40, 387, 417, 418–423, 660
  fastener location, 45, 212, 238, 254
test specimen, 34, 608, 609
Elevated temperature, wet (ETW), 501, 502
Elliptical, 156, 251, 459, 637
Elongation
  bearing strength cutoff, 233, 504
  hole, 44, 216, 217, 247, 261, 557
  material, 17, 524
End distance, 263
(see also Edge distance)
End notch flexure (ENF) test, 333
End-fixity coefficient, 424, 431
Endurance limit, 551
Energy absorbing mechanism, 9, 10, 600
Energy cutoff level, 491, 589
Energy release rate (ERR)
  (see Strain energy release rate)
Engesser, 419, 423, 430
Engine containment ring, 8
Engine mounts, 532, 578
Engineering constants
  (see Elastic modulus and Effective properties)
Environmental effects
  corrosion (see Corrosion)
  general, 24, 50, 501, 538, 551
  moisture (see Moisture)
  temperature (see Temperature)
  ultraviolet (see Ultraviolet)
Epoxy
  adhesive versus matrix (resin), 306, 325, 329–331, 344
  brittle, 9, 316, **365**, 485, 502, 552–559, 601
cure temperature, 9
film adhesive (see Adhesive material)
hygrothermal effects, 308, 311, 316, 501, 502, 507, 543, 607
matrix, 5, 7, **9**
stress-strain curves (FM-73 and FM-300K), 308
toughened, 9, 365, 485, 513, 559, 601
Equilibrium, 58, 69, 225, 229, 230
Equivalent properties
  (see Effective properties)
INDEX

Erosion, 580, 596
ETW
   (see Elevated temperature, wet)
Euler stability solution, 423–429, 431
Euler-Engesser, 423, 430
Eurofighter Typhoon, 4
Example problems, 673–712
Expansion coefficients
   (see Coefficient of ...)
Extension-twist coupling
   (see Coupling properties)
External loads (aircraft), 541, 570
External structures, 3, 4, 21, 25, 414

F
F-117, 3
F-14, 4, 8, 361
F-15, 4, 8, 362
F-18, 4, 279, 302
F-22, 4
F-35, 4
Fabric
   carpet plots, 122
   design, 12, 344, 375, 537, 598
   drapability (compound surface), 12
   dry, 10–12, 377
   elastic properties for CLT, 68
   fiber percentages, 16, 95, 122
   non-crimp, 12, 122, 502
   plain weave, 12, 95, 96, 99, 101, 457,
   536, 537
   prepreg, 10, 12
   versus unidirectional plies, 11, 12, 15,
   16, 502
   waviness effect, 502
   woven, 11, 12, 120, 502
Fabrication methods
   (see Manufacturing methods)
Facesheet, 436
   design considerations, 601
   intracell buckling (see Intracell buckling)
   wrinkling (see Wrinkling failure mode)
Factor of safety, 169, 570
Fail-safe approach, 578
Failure criteria
   for glass fiber composites, 184
   laminate based, 178–182
   ply based, 167–177
   ply-based versus laminate-based, 164,
   182
   shortcomings of ply-based criteria, 176
Failure mechanisms of laminate, 162
Fairings, 3, 5, 8, 438, 533, 586
Fan blade (blade-out), 584
Fastened joints
   (see Mechanically fastened joints)
   Fastened joints versus bonded joints
      (see Mechanically fastened joints
      versus bonded joints)
   Fastened-bonded joints, 361
Fastener
   100°, 266, 270, 361
   130°, 267, 270, 361
   bending, 45, 236, 264, 266, 557
   failure modes, 233
   fastener flexibility, 220–223, 645–646
   fatigue, 264–268, 270, 279, 557
   flush head, 265, 266, 267
   materials, 264, 265
   oversize, 268, 270
   preload (see Clamp-up)
   protruding head, 258, 260, 265, 266,
   270, 431
   shear failure mode, 232, 235
   shear head, 265, 266
   tension head, 265, 266
   tension load, external, 213, 215, 235
   types, 264, 265
Fastener load distribution
   compatibility equations, 226
   equilibrium equation, 225, 229, 230
   fastener flexibility, 220–223, 645–646
   FEM solutions, 230
   hard points, 215, 229, 231, 247, 374
   linear, 220–230
   matrix solution, 227, 647–649
INDEX

nonlinear, 216–218, 257, 258
shear loading, 231
thermal loading, 230
Fastener spacing, column, 218, 237, 242, 244, 248, 249, 262
Fastener spacing, pitch, 218, 224, 430, 431
Fatigue, 549–567
analytical solutions, 564
arrested-growth, 564
carbon fiber composites, 5, 22, 551
carbon fiber versus glass and aramid fibers, 8, 552
delamination growth, 350, 557
fastener locations (including laminate), 251, 553, 556
fasteners (see Fastener)
fixed wing applications, 22, 546, 551, 555, 556
glass and aramid fibers, 552
metals versus composites, 27, 31, 51, 216, 238, 544, 554, 563, 564
no-growth, 561
open holes, 553
scatter, 499, 551, 610
slow-growth, 563
threshold of damage and high loads, 52, 552, 559, 562, 563, 615
Faying surface sealant, 539
Federal Aviation Authority (FAA), 571, 579, 612
FHC
(see Filled hole compression)
FHT
(see Filled hole tension)
Fiber
compared to bulk materials, 6
misalignment, 499, 621
role of, 7
types, 7, 8
waviness, 12, 345, 502, 572, 621
Fiber dominated layup, 164, 170, 174, 177–180, 184, 532
Fiber metal laminate (FML), 14
Fiber percentages, 15, 16, 95, 119, 120, 259, 532
Fiber volume fraction, 513, 622, 624, 625
Fiberglass
(see Glass fiber)
Fiber-matrix interface and disbonding, 10, 162, 490, 599
Field repairs, 363, 377, 378
Filament winding, 11, 27, 532
Fill direction, 68
Filled hole compression (FHC), 50, 184, 498, 518, 527
versus OHC, 252, 504
Filled hole tension (FHT), 50, 498, 518, 527
installation torque effect, 505
versus OHT, 247, 503
Filled hole, definition, 498
Film adhesive
(see Adhesive material)
Fine-grid, 338
Finite element method/model
beam-column, 399
bonded joints, 305, 314, 328
fastened joints, 218, 230, 242
for VCCT, 338, 340
large cutouts, 485
large cuts, 484
loads model, 41, 541, 542
plate stability, general, 413
repaired, 370, 371, 374
stress solutions, 156, 192, 198, 199
sublamine analysis, 493
Finite element, nodes and elements
beam, 230, 542
node, 338, 339
shell, 339, 340
solid, 230, 338, 340
specialized, 230, 340
spring, 230
Finite width correction factor (FWCF)
bearing, 243, 254
cracks, 482, 484
open holes, 193, 194, 244
Fire, 544, 580, 605
First fiber failure (FFF), 175
First ply failure (FPF), 169, 174
Fitting
  curve/data (see Curve fitting)
  factor (see Fitting factor)
  part, 21, 215, 268, 302, 349, 531
Fitting factor, 36, 166, 259, 511
Fit-up, 302, 346, 376, 652
Fixed wing aircraft, 3–6, 22, 25, 551, 612
Flammability, 544, 605
Flange, 348, 387, 660
Flat plate bending, 31, 132, 136, 182
Flatwise failure mode for sandwiches, 462
Flaw
  initial (inherent), 313, 335, 337, 341, 342
  manufacturing (see Defects)
Flex-core, 435
Flexural core crushing, 461
Flexural modulus
  (see Bending modulus)
Flexural rigidity
  (see Bending stiffness)
Flexurally balanced laminate, 98–101
Floor beam, 5, 607
Flowcharts
  A, B, D matrices, 86
  column stability, composites, 428
  column stability, metals, 429
  cross section stability, 422
  fastened joint analysis, 258
hygrothermal loads and moments, 630
ILFM analysis, 342
laminate-based criteria (final), 182
laminate-based criteria (preliminary), 181
laminate-level strains in rotated system, 167
ply-based criteria (final), 178
ply-based criteria (preliminary), 175
sizing drivers, 546
stress/strain of a ply/laminate with
  hygrothermal loads, 632
stress/strain of a ply/laminate without
  hygrothermal loads, 145
validated analysis method, 37
validated analysis method
  (substantiation), 613
Fluid ingestion
  (see Moisture/ingression)
Fluids, 9, 379, 539, 580, 600, 602
Flush head fastener
  (see Fastener)
Foam
  adhesive, 317, 344
  core, 435, 441, 602
Foreign object debris (FOD), 572, 653
Fraction
  fiber volume, 513, 622, 624, 625
  matrix weight, 513, 622
Fracture mechanics
  delaminations (see Interlaminar
  fracture mechanics)
  metals (see Cracks, metal)
  WEK model, 205
Fracture toughness
  adhesive, 159, 325
  effective value for laminates, 479
  matrix, 159, 325, 334, 336, 598
  metals, 53, 478, 479, 578
  testing, 333, 334, 341
Frame, 41, 348, 384, 414, 534, 585
Free body diagram, 225, 229, 231, 241, 392, 450
Free edge
  as a boundary condition, 130, 406, 418, 430
  interlaminar stresses, 150–156, 185
Free strain, hygrothermal, 627–631
Friction
  (see Clamp-up)
Fuel, 9, 268, 379, 504, 539, 601
Full-scale tests, 608, 609, 616, 617
Fuselage, 5, 374, 384, 415, 484, 486
  (see also Pressurization, fuselage)
INDEX

G
Galvanic corrosion
  (see Corrosion)
General visual inspection, 586
Get home loads, 584, 585
GLARE, 14, 379
Glass fiber
  applications, 3, 6, 8
  failure criteria, 164, 174, 179, 180, 184
  fatigue, 51, 552
  general, 14, 21, 23, 25, 51, 265, 346,
    370, 375, 485, 538, 598, 602, 623
  properties, 513
  types, 8, 14
Glass sheet, 6
Glass transition temperature, 176, 501
Global coordinate system
  beams, 386, 660
  sandwich structures, 438
Global FEM (GFEM)
  (see Loads model)
Gouge, 374–376, 537, 571, 584, 589
Graphite fibers, 7, 14, 303, 505, 507, 513,
  556
  versus carbon fibers, 7
Grit blast, 655
Gross bypass, 240, 248, 250, 256
Gross stress versus net section stress, 194

H
Hail, 490, 572, 580, 584, 597, 616
Halpin-Tsai relationships, 623
Handling loads, 156, 379, 532, 545, 596,
  601, 603
Hard point, 215, 229, 231, 247, 374
Hart-Smith, 248, 310
Hashin-Rotem failure criterion, 173
Heat blanket, 26, 377
Heat lamp, 377
Heat sink, 377
Helicopter, 6, 8, 14
High modulus fibers, 7, 8
High performance fibers, 3, 7
High strength fibers, 8
Highly loaded structures, 259, 531, 533
High-velocity impacts, 491, 599
Hi-Lok, 265, 431
Hole damage, 265, 270, 557, 580
Hole fit, 267, 270, 557
Hole size effect, 196–205, 246, 268, 492
Holes in laminates
  (see Notches)
Homogeneous, 17, 65, 190, 386, 441
Homogenized laminate, 418, 503, 536
Honeycomb core, 325, 379, 436, 441, 454,
  466, 600–602
Hooke's law, 61, 91
Hoop direction, 368, 477, 585
Hot spots (stress), 35, 160, 607
Hot/wet
  (see Elevated temperature, wet)
Humidity, 20, 28, 501
  (see also Moisture)
Huth, 223, 645
Hybrid laminates, 6, 8, 14, 15, 485, 598
Hybrid structures, 610, 611, 616
Hygroscopic, 20, 141, 602, 625, 628, 633
Hygrothermal
  definition, 20
  loads, 141, 627
I
I-beam, 385, 392
  compared to sandwich structures, 423,
    437
  section properties, 389, 659–671
IBOLT, 256
IM7, 8, 28, 513–522, 559
Impacts
  damage mechanisms, 490, 491, 599
  resistance to, 6, 9, 10, 12, 14, 24, 536,
    537, 597–602
  strength after impact (see Post-impact
    strength)
  threats, 580
Inconel, 265
Indeterminate structures
  (see Multiple load paths)
INDEX  725

Inelastic buckling, 423, 429, 430, 472
Initial buckling
  flowchart for cross sections, 422
  of plates, 401, 402
  of sections, 416–418
Initial flaw, 313, 335, 337, 341, 342
Injection molding, 27
Injection repairs, 380
Inner plies, design, 537
In-plane/out-of-plane coupling
  (see Coupling properties)
Inserts for sandwich structures, 602
In-service threats, 580
In-situ, 176
Inspectability, 317, 344
Inspection intervals, 367, 578, 582, 588, 589–591
Inspection methods
  (see Non-destructive inspection)
Installation torque
  (see Clamp-up)
Inter-fastener buckling, 430
Interference fit, 268, 270, 504
Interlaminar fracture mechanics (ILFM), 331–342
  analysis flowchart, 342
  VCCT, 338–342
Interlaminar fracture toughness, 325, 333, 334, 598
Interlaminar shear (ILS) strength, design value, 156, 157
Interlaminar shear stress, 149, 153–159, 325, 344, 508
Interlaminar tensile (ILT) strength, design value, 156–158, 328, 508, 509, 518, 519
Interlaminar tensile stress, 150, 155–159, 325, 329, 343–346, 463, 490
Interlaminar, general, 149
  angle-ply laminate, 152
  cross-ply laminate, 154
  design considerations, 155, 531, 536–538, 543
  scenarios of concern, 150
Intermediate modulus fibers, 7, 8, 28, 513
Internal loads, 39, 541, 542, 570
Internal structures, 4, 25
Interphase, 10
Inter-rivet buckling
  (see Inter-fastener buckling)
Intralaminar buckling, 466–469
Intralaminar, 81, 139, 142–145, 149, 166
  A, B, D matrices, plate, 92
  compliance matrix, plate, 91
  elastic modulus and shear modulus relationship, 61
  stress-strain relationship, 61
Iterative solution, 472

J
Johnson solution, 419, 426, 427
Johnson-Euler solution for columns, 423, 427, 430
Joint efficiency (fastened joints), 237, 249, 526
Joints
  (see Bonded composite joints)
  (see Bonded metal joints)
  (see Mechanically fastened joints)

K
Kevlar
  (see Aramid fibers)
Kinking of fibers, 162, 196, 505, 507
Knife-edging, 267
Knockdown factors
  bonded joints, 283
  fastened joints, 256, 258, 525
  general, 36, 166, 511, 543
  laminate strength, 167, 177, 181, 182
Korex
  (see Aramid fibers)

L
Lamina
  (see Ply)
Laminate
   A, B, D matrices, 85–93
   balanced (see Balanced laminate)
   coding, 14
   compliance matrix, 88
   coordinate system, 13, 83, 84
   coupling properties (see Coupling properties)
   definition, 15
   elasticity, 79
   rotation of stiffness/compliance, 102, 104
   special types, 94–101
   stiffness matrix, 85, 88, 89
   strain, 85, 88, 141
   stress, 140
   symmetric (see Symmetric laminate)
Laminate stacking sequence (LSS), 14, 42, 79, 155, 503
   design guidelines, 535–537
Laminate-based failure criteria (see Failure criteria)
   Laminate Plate Theory (see Classical Laminate Theory)
   Landing gear, 438, 532, 578, 607
   LaRC04, 199
   LaRC05, 199
   Large aircraft, 3, 6–8, 11, 12, 34, 606, 612
   Large cutouts, 369, 373, 477, 485, 546
   Large cuts, 48, 477–485, 546, 585
   Large damage, 366, 368, 526, 545, 585
   Lateral-torsional, 399
   Layup, 13, 26
   Life factor (fatigue), 551, 610, 615
   Lightly loaded structures, 3, 237, 262, 290, 361, 363, 376, 533, 545
   Lightning protection, 21, 25, 544, 605
   strike, 580, 584, 589, 605
   Limit load (see Design limit load)
   Load enhancement factor (LEF), 551, 610
   Load factor, 610, 611, 615
   Load increase factor (LIF), 370, 375
   Load redistribution, 25, 41, 44, 216, 261, 414, 432
   Load-deformation relationships
      fastener flexibility, 217, 221, 222
      laminate, 85, 88
      rod, 80
   Loads model, 541, 609, 612, 616
   Loads on laminates (for CLT)
      hygrothermal, 141, 627
      mechanical, 139, 140
   Local stability
      beams, 399
      crippling (see Crippling)
      cross sections, 416–419
      sandwich structures, 440, 462, 466
   Lockbolt, 265
   Lockheed Martin, 4, 256
   Long column (see Columns)
   Long plates (see Plate stability)
   Long-term strength, bonded joints, 655–657
   Low performance fibers, 8
   Low-velocity impacts, 490, 587, 597–600
   LSS (see Laminate stacking sequence)

M
   Macromechanics, 17, 265
   Manufacturing defects, 463, 499, 571, 572, 584
   Manufacturing methods, 26
   Margin of safety (MS), 169, 511
   Mar-Lin model (see Power-law model)
   Material allowable (see Allowables)
   Material operating limit (MOL), 501
   Material system, 9
   Material variability, 499, 551, 570, 608, 610–612, 615, 617
   A-basis, 20, 500, 511, 570, 579, 608, 610

Excerpt from Practical Analysis of Aircraft Composites
Copyright © 2017 by Brian Esp

Excerpt from Practical Analysis of Aircraft Composites
Copyright © 2017 by Brian Esp

Excerpt from Practical Analysis of Aircraft Composites
Copyright © 2017 by Brian Esp
B-basis, 20, \textbf{500}, 511, 525, 526, 562, 570, 579, 608, 610
fatigue properties, 551
normal distribution, 500
requirements and substantiation, 562, 570, 608, 610, 611
Weibull distribution, 500
Matrix (material)
  cracking, 9, 52, 162, 196, 328, 335, 490, 536, 553, 601, 602
  matrix dominated failure modes, 24, 44, 46, \textbf{149–160}, 176, 325, 532, 607
  role of, 6, 9, 10
  types, 9
Matrix (mathematical)
  inversion, 89, 228
  symmetry, 58, 59, 89
Matrix dominated failure (in-plane), 176, 532
Max fiber strain (MFS) criterion, 174, 175, 182
Max strain failure criterion
  laminate based, 178, 181, 200, 509
  ply based, 171
Max stress failure criterion, ply based, 169
Mechanical properties, 29, 484, \textbf{497–524}, 552–560
Mechanically fastened joints, 211
  A4EJ, 218, 258
  analysis overview, 212, \textbf{257}
  clamp-up (see Clamp-up)
  critical failure mode, 260
design, 259–370
detail element, 212, 239, 254
effects of defects, 269
failure modes, 232–234
hard points, \textbf{215}, 229, 231, 247, 374
load-transfer joints, shear joints, 213–215
load-transfer joints, tension joints, 215
multi-row joints, 216–231, 238–258, 262
preload (see Clamp-up)
repairs, 368–374, 378
shear loading, 231
single-row joints, 237, 249, 262
Mechanically fastened joints versus bonded joints
general, 357–363
repairs, 363, \textbf{376–379}
Medium performance fibers, 8
Medium-velocity impacts, 491
Metals
damage tolerance, 53
fatigue, 31, \textbf{51, 54}, 551, 554, 560–565
properties, 27–30, 524
versus composites (see Composites versus metals)
Micro-buckling of fibers, 176, 196, 555
Micro-cracking, 311, 553, 601
Micromechanics
general, \textbf{17}, 66, 76, \textbf{164}, 497, \textbf{621–626}
shortcomings, 76, 164, \textbf{621}
solutions, 621–626
Midsurface
cross section, definition, 387, 660
lamine, definition, 83
ply, definition, 87
sandwich beam, definition, 443
strains and curvatures (CLT), 83, 85, 135, \textbf{141}, 143, 146
Military aircraft
applications, \textbf{3–5}
bonded joints, 361, 378
operating temperatures, 501
post-buckling, 414
stealth, 21
Miner’s rule, 52, 564
Minimum gage, 477, 597
Misalignment of fibers, 499, 621
Misdrilled holes, 262, 263, 268, 270, 535
Mixed-mode bending (MMB) test, 333
Mode I
delaminations, 325, \textbf{330–334}, 341, 350
through-cracks, 478
Mode II, \textbf{330–334}, 341, 598
Mode III, 331–334, 341
Modulus of elasticity  
(see Elastic modulus)
Mohr’s circle, 70, 416
Moisture  
aramid fibers, 8, 552, 602  
effect on bearing strength, 507  
effect on glass transition temperature, 501  
effect on laminate strength, 24, 501  
ingression, 50, 269, 312, 359, 379, 501, 598–602  
load, 141, 628  
pre-bond (see Pre-bond moisture)
Moment of inertia  
(see Area moment of inertia)
Moment-curvature relationship, 92, 131–134
Monel, 265
Multi-axial loading, 200, 204, 259, 368, 374, 484, 485, 492, 534
Multi-directional laminates, 10–13, 19, 27, 43, 75, 139, 195
Multiple load paths, 25, 41, 220, 360, 414, 500, 541, 570, 578
Multiple site damage (MSD), 53, 578
Multi-row joints  
(see Mechanically fastened joints)
No-growth  
(see Fatigue)
Nomex  
(see Aramid fibers)
Non-crimp fabric, 12, 122, 502
Non-destructive inspection (NDI), 359, 493, 572, 580, 656  
(see also Visual inspection and Ultrasonic inspection)
Non-destructive test (NDT), 656
Non-detectable defects/damage  
(see Undetectable defects/damage)
Nonlinear  
 bonded joints, 294, 302, 338  
 fastened joints, 217, 218, 257–261, 271
Nonstructural repair, 366, 375, 577
Non-woven fabric  
(see Non-crimp fabric)
Normal distribution  
(see Material variability)
Notch sensitivity, 43, 195, 199, 543
Notch shape, 206
Notched strength ratio (NSR), 43, 195, 202
Notches  
 large notches, 477–487  
 small notches, 43, 189–209, 479, 485, 498
Nacelle, 501
NCAMP, 498
NDI  
(see Non-destructive inspection)
Net bypass, 45, 212, 225, 239, 240, 244, 250, 254
Net section stress, 194
Net tension failure (net section failure), 18, 43, 237, 238
Neutral axis calculation  
 cross section, 387, 667, 669  
 laminate, 117  
 sandwich beam, 451, 452, 669
No-edge-free, 417
Off-axis ply, 75, 76, 170, 172
OHC  
(see Open hole compression)
OHT  
(see Open hole tension)
One-edge-free, 417, 419
Open hole, 10, 498, 637
Open hole compression (OHC), 200, 252, 498, 518, 522, 527
Open hole stress field solution, 253, 637
Open hole tension (OHT), 200, 247, 498, 518, 522, 527
Open sections, 670
Opening mode
   (see Mode I)
Orthotropic
   2D orthotropic in plane stress (ply), 16, 65
   laminate, 100, 113, 190–194, 254, 534, 637
   material, 62
Osprey
   (see V-22 Osprey)
Outer plies, design, 12, 344, 375, 537
Oven, 26, 377
Overhead bin, 438
Overlap repair
   (see Patch)
Overlapping assumption, 220, 542
Overload factor
   (see Load factor)
Oversize fastener
   (see Fastener)

P

PABST, 297, 306, 312, 313
Pad-up, 485, 486, 535, 538, 582
Parallel axis theorem, 87, 388, 445, 455, 668
Paris’ law, 350
Part candidates made with laminates, 26, 531
Paste adhesive
   (see Adhesive material)
Patch
   material, 370, 375, 379
   repair, 365
Peel ply, 655
Peel stress
   (see Bonded metal joints)
Perfectly plastic material, 17, 18, 43, 195, 295
Phenicolic, 10
Pin bearing, 505, 506
Pitch, fastener, 218, 224, 430, 431
Plain weave fabric
   (see Fabric)
Plane strain, 64, 340, 479
Plane stress, 16, 63–65, 67, 91, 149, 152, 340
Plastic bending, 290
Plastic zone, bonded joints, 295–298
Plasticity
   adhesive, 294–297, 307–311, 330
   metal, 17, 43, 195, 423
Plate boundary conditions, 401
Plate stability
   bifurcation buckling, 402–413
   general, 401–418, 474
   long plates, 406–409, 417
   sandwich structures, 453–456, 474
   unsymmetric laminates, 404
Ply
   compliance matrix, 66, 75
   coordinate system, 11, 65
   stiffness matrix, 67, 73
   strain, 145
   strength, 168, 513
   stress, 145
Ply drops, 150, 160, 538
Ply percentages, 15, 119, 120
Ply-based failure criteria
   (see Failure criteria)
PMC, 9
Point stress criterion (PSC)
   bearing-bypass, 253–255
   cracks, 481
   large cutouts, 485–487
   open holes, 201–205
Poisson’s ratio
   isotropic material, 26, 48, 61
   laminate, 114–116, 121, 123
   ply, 66, 68
Polyimide, 10, 513, 538
Polymer
   bismaleimide, 10, 538, 559, 603
   epoxy (see Epoxy)
   phenolic, 10
   polyimide, 10, 513, 538
   polymer matrix, 7, 9, 10, 508
Polymer matrix composite (PMC), 9
Porosity
adhesive, 307, 312
allowable defect, 571, 572, 582
detection, 656
interlaminar/peel failure effect, 158, 306, 509
joints, 258, 269
knockdown, 511
material variability, 499, 509
processing, 651, 653, 654
repairs, 376, 377
Post-buckling
beams, 399
compression, 414
pull-off load, 348, 414
shear, 416
Post-impact strength, 48, 489–495, 508
Potting, 379, 380
Power-law model, 205, 479–481
Pre-bond moisture, 653
Pre-cured patches, 365, 376–379
Pre-impregnated
(see Prepreg)
Preliminary analysis
general, 38
lamine-based criteria, 178–181
ply-based criteria, 167–175
Preliminary design values, 250, 524–527
Preload
(see Clamp-up)
Prepreg, 10–13, 26, 329, 330, 377
Pressure, sandwich, 453, 454
Pressurization, fuselage, 5, 232, 550, 555, 570, 584, 585
Primary structure, 3–8, 579
Principal structural element (PSE), 579
Processing, bonded joints, 651
Producibility, 22, 26
Progressive damage
(see Damage progression)
Properties, general
lamine, 50, 498, 512–522
metal, 48, 523
ply, 49, 513, 514
Protruding head fasteners, 258, 260, 265, 266, 270, 431
PSC
(see Point stress criterion)
Pseudo-plasticity, 43, 195, 246, 255
Puck criterion, 184
Pull-off load, 348, 414
Pull-through failure, 232, 234, 257, 261, 265–267
Pultrusion, 27
Q
Quality control (QC), 314, 350, 531, 651, 656
Quartz, 7, 23
Quasi-brittle
(see Pseudo-plasticity)
Quasi-isotropic laminate
definition, 99, 100
for various composite material
systems, 513
general, 28, 112, 190
R
Radar signature
(see Stealth)
Radiography, 580
Radius of curvature, 85
Radius of gyration, 426
Radius opening, 156
Radome, 3, 5, 8, 23, 438
R-curve, 334, 484
RDL
(see Repairable damage limit)
Redistribution of loads
(see Load redistribution)
Reduced bending stiffness matrix, 107, 135, 146, 404, 406, 456, 458
Reduced singularity model
(see Power-law model)
Reduced stiffness matrix, ply, 67
Reduction factors
(see Knockdown factors)
Redundant structures
(see Multiple load paths)
Reference plane, CLT, 83
Refrigerate, 377
Reinforcement
fiber (see Fiber)
to structure, 485, 486, 582
Relaxation
dent depth, 588
effect on clamp-up, 216, 236, 268, 505, 615
Remote stress, 28, 43, 194, 489, 499, 554
Repairability, 25, 262–264, 380, 524–527, 534, 546
Repairable damage limit (RDL), 366
Repairs, 365
bonded, 363, 374–380, 535, 590
composite repairs for metal structures, 379
design, 376
flush, 377
injection, 380
mechanically fastened, 368–374, 378
mechanically fastened versus bonded, 363, 376–379
nonstructural, 366, 375, 577
requirements, 366
time limited, 367
Requirements and substantiation, 547
Residual strength, general, 24, 52–54
Residual stress
general, 141, 359, 571, 600
thermal, 141, 631, 632
Resin, 9–11
Resin transfer molding (RTM), 27
Resistance to damage
(see Damage resistance)
Retarded curvature, 107, 115, 146
Retardation of cracks, 52, 610
Ribbon direction, 441, 442, 465
Risk of failure, 33
Room temperature (RTD and RTA), 501, 510, 551, 601
Rotor blade, 6, 8, 14, 564
Rotor burst, 580

Rotorcraft
(see Helicopter)
Roundoff of delamination, 558, 561
Rule of mixtures, 623, 626
Running load, 84, 140
Running moment, 85, 140
Runout stress, 551
Runway debris, 490, 572, 580, 584

S
Safe-life approach, 578
Safety factor, design load, 570, 583, 589
Safety, general, 33, 34, 361, 544, 569, 577, 605
Sandwich structures, 435–476
applications, 6, 438
beams, 443–452
closeouts, 454, 462, 602
design, 539, 601–603
durability, 545, 601
design
edge band, 439, 454
effective core properties, 441
failure modes (caused by damage threats), 598
failure modes (caused by structural loading), 439, 440
plates, 453
reparis, 317, 345, 376, 377, 379
stability, 440, 462–475
versus solid laminates, 423, 436, 438, 471, 598–600
Scarf joints
general, 279, 282, 300, 301, 359
reparis, 374–379
Scarf ratio (scarf angle), 318, 345
Scatter
(see Material variability)
SCF
(see Stress concentration factor)
Scratches and Gouges, 374–376, 537, 571, 584, 589
Secondary bond, 377, 435, 590, 607, 652, 655
Secondary loads, 150, 156, 160, 268, 607
Secondary structures, 3, 5, 35, 376, 379, 533, 570, 579, 607

Sections
(see Cross sections)

Semi-empirical, general composite analysis, 35, 37
S-glass, 8, 513
(see also Glass fiber)
Shear after impact (SAI) strength, 489, 499, 508
Shear clip, 215, 231
Shear crimping
(see Core shear instability)
Shear deformation coefficient, 391, 448
Shear deformation, sandwich structures, 446
Shear deformation, solid laminate beams, 390
Shear head fastener
(see Fastener)
Shear modulus
core, 441
isotropic material, 48, 61, 524
lamine (effective), 112, 114–118, 121, 123
metals, 524
ply, 49, 66, 513, 515, 623
Shear strain, engineering versus tensor, 58–60, 71, 85
Shear-extension coupling
(see Coupling properties)
Shearography, 580
Shearout failure, 232, 234, 260, 263
Shear-twist coupling
(see Coupling properties)
Shim, 269
Short column
(see Columns)
Short cycle fatigue (strain-life), 51
Short fibers
(see Discontinuous fibers)
Short-beam strength (SBS), 508, 512, 514, 518
Sign convention for laminates, 83, 84
Single load path structures, 39, 500, 570
Single shear
bonded joints, 280
Single-row joints, 237, 249, 262
Single-strap joint, 214, 279
Sizing (design), 54, 542
composites versus metals, 31, 51, 54
sizing drivers for composites, 51, 54, 494, 524–527, 544–546, 585, 597
sizing drivers for metals, 31, 51, 54
Sizing (finish for fibers), 10
Skin-stiffener configurations, 119, 150, 347–349, 414, 585, 600
Skydrol, 379, 601
Slenderness ratio, 426–429
Sliding mode
(see Mode II)
Slit tape, 11
Slow-growth
(see Fatigue)
Small aircraft, 6, 8, 22, 33, 361, 438, 579, 614
Small notches
(see Notches)
Solid laminate cross section, 383–385
Solid laminates versus sandwich structures, 423, 436, 438, 471, 598–600
Space structures, 23, 33, 361, 534, 635
Spar, 4, 558, 609
Special types of laminates, 94–101
Specially orthotropic laminate, 101, 403, 458, 462, 466, 537, 662, 670
ply, 76
Specific stiffness, 20, 21, 29, 30, 435
Specific strength, 19, 21, 27, 29, 30, 435, 555
Spectrum loading, 550, 555–565
Spew, adhesive, 312
Splash
   (see Tooling splash)
Spring model for fastened joints, 224
Springback, facesheet, 588, 599, 600
Square cells, core, 435, 441, 460, 466
Square root singularity, 478, 479
SRM
   (see Structural repair manual)
Stability, 401
   columns (see Columns)
   crippling (see Crippling)
   cross sections (see Cross sections)
   laminates (see Plate stability)
   plates (see Plate stability)
   post-buckling (see Post-buckling)
   sandwich structures (see Sandwich structures)
   unsymmetric laminates (see Plate stability)
Stabilized joint, 269
Stable crack growth, 52, 53, 337, 563
Stacking sequence
   (see Laminate stacking sequence)
Standard orientations, 15, 95, 119, 532
Static strength requirements, 54, 527, 544, 569–575
Statically indeterminate
   (see Multiple load paths)
Statistical distribution
   (see Material variability)
Stealth, 3, 21, 360, 367, 378, 414
Steel
   fasteners, 21, 24, 264, 265, 270
   landing gear, 578
   repair patches, 370, 375
   structures, 52
Step loads, 545, 596, 601, 603
Stepped-lap joints
   bonded, 279, 302, 346
   fastened, 213, 220, 314
Stiffener
   (see Skin-stiffener configurations and Stringer)
Stiffness
   definition of, 79
   geometric and constraint effects, 129
   laminate, 85, 86
   ply, 73
Stiffness balanced joints, 219, 286, 289, 292, 296
Stiffness matrix
   isotropic plate, 92
   laminate, 85, 88, 102
   ply, 67, 73
Stiffness-to-weight
   (see Specific stiffness)
Strain
   in-plane, laminate, 85
   in-plane, ply, 74, 145
   shear strain, general, 58
   through-thickness gradient, 142
   transformation matrix, 71
Strain allowables versus stress allowables, 509
Strain compatibility, 40, 81, 450, 509, 623
Strain distribution for laminates (CLT), 141–143
Strain energy, 294, 308–311
Strain energy release rate (SERR), 331–333, 350
Strain gage, 612, 616
Strain invariant failure theory (SIFT), 199
Strain softening method, 484
Strain transformation matrix
   (see Transformation)
Strain-life, 51
Strength
   notched strength (see Notches)
   ply, 168, 515
   post-impact strength (see Post-impact strength)
   unnotched strength (see Unnotched strength)
Strength-critical structures, 184, 524, 533, 600
Strength-to-weight
   (see Specific strength)
Stress concentration factor (SCF)
  bearing, 241–244
  open holes, 190–194, 244, 637
Stress concentrations
  (see also Stress concentration factor)
  bondline, through-thickness, 305, 314
  design considerations, 534, 538
  effect on material variability, 499
  effect on mechanical properties, 499,
    502–504
  fastened joints, 238–244, 248
  fatigue, composites, 553–555
  fatigue, metals, 19, 51, 53, 248, 554
  pseudo-plasticity (see
    Pseudo-plasticity)
  ultimate load capability, 18, 43, 44,
    195–199
Stress distribution
  near cracks, 481
  near open holes, 192, 637
Stress field, open and filled holes, 253, 637
Stress intensity factor (SIF), 53, 332
Stress transformation matrix
  (see Transformation)
Stress-corrosion
  (see Corrosion)
Stress-induced strain, hygrothermal, 631
Stress-life, 51
Stress-strain diagram, 17, 295, 308–310
Stress-strain relationship
  anisotropic material, 63
  isotropic material, 61
  laminates (in-plane), 641
  orthotropic laminate (in-plane), 113
  orthotropic material, 62
  ply, general, 73, 74
  quasi-isotropic laminate (in-plane),
    112
Stringer
  (see also Skin-stiffener configurations)
Structural bonding special consideration, 590
Structural repair manual (SRM), 366, 368
Structural substantiation, 605–618
Sub-components, 34, 163, 606–617
Subcritical failure/modes, 162, 174–178,
  183, 195, 196
Sublamine
  analysis methods, 493
  buckling, 150, 162, 490
  fatigue loading, 551, 558, 564
  interlaminar stresses, 150, 159, 490
Substantiate by analysis, 612
Substantiate by tests, 613
Substantiation, 605–618
Superposition, 254, 278
Surface preparation for bonded joints, 378, 590, 654
Symmetric cross sections, 386, 661–665
Symmetric laminate, 96–98, 536
Symmetry of matrix (mathematical), 58,
  60, 66, 89
T
Tailoring of Laminates, 23, 26, 28–30,
  534
Tangent modulus, 419, 430, 472
Tap testing, 572, 580, 581, 586, 588, 600
Taper ratio
  end of bonded joints, 299, 318, 345
  ply drops, 538
Tapered lap joints
  bonded, 278, 282, 299, 318
  fastened, 213, 214, 245
Tear strap, 585
Tearing mode
  (see Mode III)
Teflon, 189
Temperature
  cold (see Cold temperature, dry)
  cure (see Cure)
  elevated (see Elevated temperature,
    wet)
  glass transition temperature, 176, 501
  operating temperatures, 501
  room temperature (see Room
    temperature)
Temperature effect on
  adhesives, 308, 311
  bearing strength, 507
  CTE, 633
  interlaminar properties, 158, 508, 509
  tension and compression strength,
    501, 502, 504
Tension after impact (TAI) strength, 489, 499, 508
Tension fitting
  (see Tension joint)
Tension head fastener
  (see Fastener)
Tension joint, 215
Tension loads (external), fasteners, 213, 215, 235
Tension strength
  metals, 48, 524
  notched laminates, 50, 200, 503,
    518–522, 526
  ply, 49, 168, 514
  unnotched laminates, 50, 518–522
Tension versus compression properties,
  502, 542
Tensor
  strain, 58, 59, 60, 71, 85
  stress, 57, 63
Testing
  adhesive properties, 307, 657
  ASTM (see ASTM standards)
    bearing-bypass, 246, 247, 252
    curved beams, 158
    destructive, 656
    fastener flexibility, 221
    general composite properties, 512
    interlaminar (stress based), 213
    interlaminar fracture mechanics, 333
    lap-shear, 283, 284, 657
    non-destructive, 656
    substantiation, 605–617
    wedge test, 657
Thermal barrier, 437, 438
Thermal expansion
  (see Coefficient of thermal expansion)
Thermal loads
  (see Hygrothermal)
Thermography, 580
Thermoplastic, 10, 598
Thermoset, 9, 598
Thick adherend test, 307, 312, 330
Thickness effect
  laminate strength, 503
  large cuts, 479, 484
  post-impact strength, 491
Thin laminates, 214, 267, 360–363, 374,
  406, 589
Thin versus thick laminates, 316,
  360–362, 414, 491, 598
Threats
  (see Damage threats)
Three dimensional failure criteria, 184,
  198, 199, 264, 334
Threshold
  damage detection, 492, 571, 586, 587,
    588
  fatigue damage, 52, 551, 552
Through-the-thickness discontinuity
  (see Notches)
TiGr, 14
Tire fragment, 580, 584
Titanium
  fasteners, 24, 264, 265, 270, 347, 360
  repair patches, 368, 370, 378
  structures, 21, 302
TMS
  (see Truncated max strain)
Tooling splash, 91, 377
Torque, installation
  (see Clamp-up)
Torsion loading, 400
Torsional instability, 399, 430
Torsional rigidity, 91, 400, 670
Toughened epoxy
  (see Epoxy)
Tow, 11, 334
INDEX

Transformation
  laminate compliance, 104
  laminate stiffness, 102
  of strain, 69
  of stress, 69
  ply compliance, 74
  ply stiffness, 72
Transition length
  columns, 426
  sandwich structures, 472
Transverse shear load
  beams, 390, 391
  sandwich structures, 446–448
Transverse shear stiffness
  bonded adherends, 288, 293
  fastener bending, 45, 236, 557
  sandwich structures, 47, 424, 443, 446, 471–475
  stability, 47, 405, 406, 423, 471–475
Triaxial loading, 531, 532
Truncated max strain (TMS) failure criterion, 180–182, 184, 200
Tsai-Hill failure criterion, 173, 175, 184
Tsai-Wu failure criterion, 171–173, 175, 184
Twist-extension coupling
  (see Coupling properties)
Twisting stiffness for laminates, 90, 670
Two-bay crack, 485, 585
Two-parameter, 198, 201, 205, 479, 481

U
Ultimate failure, general, 18, 42, 43
Ultimate laminate failure (ULF), 174
Ultimate load
  (see Design ultimate load)
Ultimate load capability, general, 18, 43, 294, 414
Ultrasound inspection, 377, 572, 580, 581, 654
Ultraviolet (UV), 539, 580
Unbalanced bonded joint, 285, 301, 316
Unbalanced laminate, 95
Unbond, 324, 325, 572
Undetectable defects/damage, 313, 486, 544, 571, 587, 617
Unidirectional ply, 11, 15, 65, 74, 75, 120, 502, 513, 515, 598
Uni-tape, 11, 12
Unnotched strength, 29, 161–187, 518, 520
Unstabilized joint, 268, 278, 290, 506
Unsymmetric cross sections, 386, 660, 666
Unsymmetric laminate
  applied curvatures, 107, 146
  curvatures suppressed, 107, 115, 146
  effective bending moduli, 124, 125
  effective bending stiffness, 134, 135
  effective in-plane properties, 115–119
  loading, 107, 146
  matrix inversion, 89
  stability, 404
  used for cross sections, 386, 664–666
  warpage, 96, 536

V
V-22 Osprey, 534
Vacuum, 26, 27, 376, 653
Vacuum assisted resin transfer molding (VARTM), 27
Validated analysis method, 35–38, 151, 161, 511, 541, 606, 612
VCCT
  (see Virtual crack closure technique)
Virtual crack closure technique (VCCT), 338–342
Visible impact damage (VID), 558, 561, 562, 584, 587
Visual inspection
  detailed visual, 53, 586–590
  general visual, 586
  walk-around, 586
Voids, 158, 311, 509, 572, 622, 651
  (see also Porosity)
Volkersen, 286, 288, 311
Von Mises, 173, 306, 330
### W
- Walk-around inspection, 586
- Warp direction, 68
- Warpage, thermal loading, 96, 536
- Wave solutions, buckling, 410–412
- Waviness
  - (see Fiber and Fabric)
- Web, 387
- Wedge test, 657
- Weft, 68
- Weibull distribution
  - (see Material variability)
- Weight, 3, 4, 21, 27, 31, 33
- Weighted average, 419–423
- WEK criterion
  - (see Fracture mechanics)
- Wet layup, 11, 26, 377
- Whitney-Nuismer criteria, 201
- Window, 51, 485, 486
- Wing, 23, 54, 302, 374, 535, 545, 550, 585, 607, 609
- Wing root fitting, F-18, 302
- Wrinkles in laminates, 258, 511, 621
- Wrinkling failure mode, 457, 462–466, 471

### X
- X-29, 23

### Y
- Young’s moduli
  - (see Elastic modulus)

### Z
- Z-pinning, 598